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Dynamic Programming and the Graphical
Representation of Error-Correcting Codes

Stuart Geman, Member, IEEE,and Kevin Kochanek

Abstract—Graphical representations of codes facilitate the
design of computationally efficient decoding algorithms. This is
an example of a general connection between dependency graphs,
as arise in the representations of Markov random fields, and the
dynamic programming principle. We concentrate on two com-
putational tasks: finding the maximum-likelihood codeword and
finding its posterior probability, given a signal received through
a noisy channel. These two computations lend themselves to a
particularly elegant version of dynamic programming, whereby
the decoding complexity is particularly transparent. We explore
some codes and some graphical representations designed specifi-
cally to facilitate computation. We further explore a coarse-to-fine
version of dynamic programming that can produce an exact
maximum-likelihood decoding many orders of magnitude faster
than ordinary dynamic programming.

Index Terms—Dynamic programming, graphical models, max-
imum-likelihood decoding, soft decoding.

I. INTRODUCTION

B Y now, nearly everyone in the coding community knows
about the tight relationship between the dependency struc-

ture on a set of random variables and the costs of computing
certain functionals on their joint distribution. One way to de-
duce this relationship is to generalize, more-or-less straightfor-
wardly, the principle of dynamic programming (Bellman [1]),
but it can be arrived at from many other directions as well. In
fact, an amazing history of discovery and rediscovery emerges
from a diverse range of applications. Indeed, in one way or
another, the “forward–backward” algorithm [2], “peeling” [3],
“parsing” [4], the Viterbi algorithm [5], the “sum–product” al-
gorithm [6]–[9], “bucket elimination” [10], and “evidence prop-
agation” [11]–[13], all rest on this very same dynamic-program-
ming principle. Oftentimes there is a good reason for using
one variation over another. With one approach, there may be
a book-keeping scheme that avoids duplicating computations;
with another, the computational flow may be particularly trans-
parent or convenient. The best choice is typically dictated by the
computational constraints and the functionals of interest.
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We will concentrate here on two particular kinds of compu-
tations: computation of the most likely configuration of a col-
lection of random variables, and this configuration’s associated
probability. In the context of maximum-likelihood (“soft”) de-
coding, we calculate these functionals under theposteriordis-
tribution—the conditional distribution on the transmitted code-
words given the received signal. What codeword was most likely
transmitted? What is the conditional probability that this max-
imum-likelihood codeword was in fact transmitted? In other
words, we will compute themaximum a posteriori(MAP) esti-
mator of the transmitted codeword and the (conditional) proba-
bility that the estimator is actually correct. MAP decoding gives
the most likely codeword, and therefore minimizes the prob-
ability of a decoding error. If, alternatively, we seek to mini-
mize the number of information-bit errors, then we would max-
imize the posterior marginal at each information bit. In general,
these are not the same thing, and the better choice is clearly
problem-dependent. MAP makes sense when the codeword rep-
resents a logical unit, perhaps a product name, a price, a cate-
gory, or an English word. On the other hand, a stream of infor-
mation bits with noa priori structure calls for minimizing the
bit-error rate.

This paper is about using graphical representations of codes
and probability models of channels to calculate the exact MAP
decoding and its probability. The emphasis is on finding rep-
resentations and algorithms that make these calculations com-
putationally feasible. It should perhaps be pointed out that, al-
though the connections between graphs, codes, and computa-
tion are currently the subjects of intense research, most of the
effort is in a somewhat different direction. The emphasis, in-
stead, is on iterative decoding algorithms that are generally not
exact and whose convergence properties are generally not well
understood, but often exhibit, nevertheless, spectacular perfor-
mance. Many codes which would be impossible to decode ex-
actly lend themselves effectively and efficiently to iterative de-
coding, in some cases even approaching channel capacity. Gal-
lager’s [14] low-density parity-check codes and associated iter-
ative decoding algorithm are probably the first examples, but
few if any recognized the power of Gallager’s construction.
Tanner [15] found clean graphical representations of Gallager
and other related codes, and utilized these representations to
address a host of design issues concerning computational com-
plexity and minimum distance. Tanner’s graphical representa-
tions helped to set the stage for the rediscovery of Gallager
codes, and for the many extensions that have evolved over the
past few years. (See also Bahlet al. [16] for an early paper an-
ticipating, rather remarkably, the modern viewpoint.) Of course,
the turbo codes of Berrouet al. [17] also spurred this line of re-
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search, since these codes, as well, have natural graphical rep-
resentations, come equipped with an iterative decoding algo-
rithm, and appear to perform near optimally in certain regimes.
Wiberg and collaborators (see [6] and [7]) picked up on Tanner
graphs and turbo codes, and within a general treatment of codes
on graphs made connections to soft decoding, general channel
models (with memory), and iterative and noniterative decoding
algorithms. MacKay and Neal (see MacKay [18] for a thorough
discussion) developed some of these same themes, and, addi-
tionally, introduced related codes and decoding methods that ap-
pear to be among the current best performers. The connections
and common themes among all of these approaches, as well as
to a broader framework including Bayesian inference, Markov
random fields, belief propagation, and the modern theory of
expert systems, seem to have been first understood and most
clearly formulated by Kschischang and Frey [19].

Our goal in this paper is twofold. We first present a brief tu-
torial on Markov random fields (MRFs), dependency graphs,
and the noniterative computation of various functionals on mar-
ginal and posterior distributions. In the remainder of the paper,
we present some new results on how to apply these computa-
tional strategies to facilitate the maximum-likelihood decoding
of graphical codes. As we have said, our focus is somewhat dif-
ferent from the current trend, in that we concentrate on repre-
sentations that allow exact computation, and on new methods
for reducing computational complexity. But in light of the often
good performance of iterative methods, it would be of great in-
terest to systematically compare iterative and exact computa-
tions in a decoding problem that lends itself to both approaches.
We have not yet made these comparisons.

Section II is about generic computational issues on graphs.
There is an especially transparent connection between graphs
that represent dependency structures and the efficient calcula-
tion of a most likely configuration and its associated probability.
This is essentially the “bucket elimination” algorithm, and it is
perhaps the most straightforward of the various generalizations
of dynamic programming. There is no need to triangulate, no
need to construct junction trees, and no need to worry about cy-
cles. Conveniently, the computational cost is readily calculated
once a site-visitation schedule has been established. Further-
more, it is often the case that the most efficient site-visitation
schedule is immediately apparent from the general structure of
the dependency graph.

In Section III, we consider the simplest possible case:
graphs with linear structure. We review their connection to
convolutional codes and revisit Viterbi decoding from the MRF
viewpoint. We point out that the (posterior) probability that the
Viterbi-decoded signal is correct can be calculated as easily
as the decoding itself, and we discuss extensions to channels
with Markov memory, designed to model burst noise [20],
[7]. In Section IV, we generalize to the case of tree-structured
graphs and make a connection to production systems and
context-free grammars. We reformulate Forney’s squaring
construction [21] to obtain a grammatical representation of
the Reed–Muller (RM) and other related codes. Moreover,
we discuss the computational complexity of soft decoding
or of evaluating posterior probabilities for both memoryless
and Markov communications channels. Finally, in Section

V, we introduce two (not necessarily exclusive) methods for
reducing the computational demands of maximum-likelihood
decoding. The first is a “thinning” algorithm which controls
computational costs by reducing information density. The
second, coarse-to-fine dynamic programming [22], is a kind
of multiscale version of dynamic programming that produces
a provably optimal configuration, often with greatly reduced
computation. We present an exact coarse-to-fine algorithm
for some “context-free” codes, including the RM codes,
and demonstrate thousandsfold improvements in decoding
efficiency.

II. DEPENDENCYGRAPHS AND COMPUTING

Given a collection of random variables and a
probability distribution

how difficult is it to compute things like the marginal distri-
bution on , or the most likely configuration ?
More than anything else, the dependency relationships among
the random variables dictate the complexity of computing
these and other functionals of. Dependency relationships
can be conveniently represented with a graphical structure,
from which the complexity of various computations can be
more or less “read off.” These graphical representations, and
their connection to computing, are the foundation of modern
expert systems [11]–[13] as well as of speech-recognition
technologies [2], [23]. In fact, the connection is quite general,
having emerged and re-emerged in these and many other
application areas, such as genetics [3], coding theory [5], [17],
computational linguistics [4], and image analysis [24].

This connection between graphs and computing is funda-
mental to the modern treatment of soft decoding, and we begin
here with a brief tutorial. (See also Frey [25] for an excellent
introduction to some of the same material.) Our approach to
graphs is through Markov random fields, and our computational
focus is on computing most likely configurations and their
corresponding probabilities.

A. Markov Random Fields and Their Gibbs Representations

For the purpose of constructing dependency graphs, it is con-
venient to index random variables by a general finite index set

, rather than the more traditional set . If state
spaces are finite, then is a finite vector of random
variables with finite range. In most applications, different com-
ponents have different state spaces, but merely for the sake of
cleaner notation, we will assume a common (and finite) range

. Thus, is a probability on .
is a Markov random field(MRF) with respect to a graph

if is strictly positive
and if

(1)

for all and all , where

• indexes the nodes of;
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Fig. 1. Dependency graph for a simple Markov random field.

• is the neighborhood structure of, mean-
ing that if and only if and there is an edge
connecting and in ; and

• is shorthand for .

The distribution on the random variable associated with any site
, given the values of all other random variables, depends

only on the values of the neighbors. This generalizes the familiar
one-sided Markov property.

An example with is in Fig. 1. The graph
summarizes many (conditional) independence relationships.
For instance,

is Gibbswith respect to a graph if can be
represented as

(2)

where

• is the set of cliques in , i.e., the set of fully connected
subsets of (including singletons);

• , ; and

• each is a positive function.

Such representations are certainly not unique: constants can be
“shifted” (multiply one term, divide another) and can be ab-
sorbed into whenever .

The main tool for working with MRFs is the representation
theorem of Hammersley and Clifford [26], [27]: is MRF with
respect to (wrt) if and only if is Gibbs wrt . One direction
is easy: it is straightforward to verify that (2) has the required
Markov property. But the other direction (MRF wrt Gibbs
wrt ) is not easy. It does, though, make easy the proof that
MRFs wrt linear graphs are Markov processes (i.e., that (1) im-
plies the more familiar “one-sided” Markov property).

Referring to Fig. 1, the cliques are the singletons, the pairs
, , , , , , , ,

, , , and the triple . MRF wrt
the graph in Fig. 1 means that can be factored into terms
each of which depends only on the components represented in
one of these cliques. An analogous relationship appears in the
study of Bayes nets, which use directed acyclic graphs (DAGs).
If “respects” a DAG (if factors into conditional probabili-
ties of individual daughter nodes given their parent nodes) then

is Markov wrt the corresponding undirected “moral” graph

(turn arrows into edges and then connect all parents of each
daughter).1

If our only interest is in graphical representations of Gibbs
distributions, then strict positivity can be relaxed. In particular,
even if we drop the condition in the definition of
Gibbs distributions, we still have the Markov property (1) wrt,
provided that we avoid conditioning on events with probability
zero. Thecomputationalanalysis of graphical models, as it turns
out, relies only on the implication Gibbs MRF. Therefore, we
shall proceed without the positivity constraint , which
would otherwise be troublesome in some of our applications.

B. Marginal and Posterior Distributions

In just about every application of MRFs, including coding,
we are interested in making inferences about a subset of
the variables given observations of the remaining variables.
What makes MRFs useful in these applications is the fortu-
nate fact that theconditional distributionon the unobserved
variables given the observed variables (i.e., theposterior
distribution) is an MRF on the subgraph of obtained by
restricting to “unobserved” sites. The conditional distri-
bution on given
and —see Fig. 1—is Markov wrt the subgraph at sites

which in this case happens to be linear.
Up to a constant, conditional distributions are just joint distri-
butions with some of the variables fixed, so the statement about
their dependency structure follows immediately from the Gibbs
representation.

Hidden Markov models (speech recognition [23], Kalman fil-
ters [28], etc.), and hidden Markov random fields [29], have de-
pendency graphs like those in Fig. 2, where we have labeled the
observable variables of the model using’s, and the unobserv-
able ones using’s, in order to distinguish them. In Fig. 2(a) and
(b), the posterior distribution, , is Markov wrt the linear
graph; in Fig. 2(c) it is Markov wrt the nearest neighbor lattice
graph.

The goal is usually to make an inference about, given .
Therefore, it is significant that the graphical structure repre-
senting the distribution on given is no more complicated
than the original structure, since, as we shall see shortly, this
structure determines computational complexity. In this regard, it
is reassuring that models such as those in Fig. 2 form a very rich
class: the set ofmarginal distributionson , obtainable from
finite-state space hidden nearest neighbor Markov models is es-
sentially everything (up to arbitrary approximation, see [29]).
One way to understand this is to examine the graphical structure
of the marginal distribution on . Consider the Gibbs represen-
tation: when the variables are summed (integrated) out, new
cliques are introduced. Two sites,and , in the subgraph will
be connected under the marginal distribution on(after inte-
grating out ) if and are already connected under the joint

distribution,or if there exists a path, traveling strictly
through the variables, that connectsand . So the marginal
on , in the cases depicted in Fig. 2, will in general define a
fully connected graph! (Just check that there is always a path

1Another variant is the Tanner graph (cf. [15], [25]), in which clique func-
tions are represented explicitly as specially designated nodes in the dependency
graph.
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Fig. 2. (a) and (b) Hidden Markov models, and (c) a hidden Markov random
field .

“through ” connecting any two components of.) This ob-
servation comes (easily—again!) from the Gibbs representation.
(The condition for creating neighbors in a marginal distribution
is necessary, but not quite sufficient—hence the disclaimer “in
general.” Consider, for example,

Then and are marginally independent

yet they are neighbors in the joint distributionandthey are con-
nected by a path through .)

C. Computation

1) Most Likely Configurations:Computing a most likely se-
quence of words given an acoustic signal, a most likely image
restoration given a corrupted picture, or a most likely code-
word given a channel output, means computing a most likely
configuration under a posterior distribution. In light of our re-
marks about the dependency structure of conditional distribu-
tions (Section II-B), it is evident that the generic problem is
to maximize a probability distribution that is Gibbs relative to
some given graph .

Consider again the simple example in Fig. 1. If, for instance,
then there are possible configurations

and exhaustive search for the most likely one is impractical. On
the other hand, we could use a kind of (generalized) dynamic
programming: choose first an ordering of the nodes in, say

. In general, has the factorization

where, for convenience, we have absorbed sub-cliques into
super-cliques. Following the site ordering, address first:
compute

and

Notice that “isolates” from the other components, and
is the value of that participates in the most likely

configuration, if that configuration involves . is
the corresponding contribution from terms involving , eval-
uated at . Since is next on the list, and isolates
and from the other components, compute

and

to get, respectively, the value of participating in the optimal
configuration (given ) as well as the contribution from terms
involving and . As for

and

So far this is standard dynamic programming, butcalls for a
slight generalization. Since it takesboth and to isolate ,

, , and from the remaining variables, compute

and

Proceeding in this way, always isolating what has been done
from what has not been done, we compute
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is the value of that participates in the most likely con-
figuration (with the corresponding cost ). Ev-
idently, then, is the corresponding value of , and

the corresponding value of , and so on,
back through the graph.

The most likely configuration is thereby computed with
many fewer operations than required in a systematic (brute-
force) search. How many operations are needed? The worst of
it is in the computation of , , , and , each of which
involves a triple loop (e.g., with regard to : for every
and every find the best ) and hence order opera-
tions. Since there are 10 sites, and no site requires more oper-
ations than an upper bound on the computational cost
is .

This procedure generalizes. For any graphwith sites
let be a “site visitation” schedule. How
much work is involved in “visiting” a site? When visiting ,
we need to compute the best for each possible configura-
tion on the set of sitesthat isolate from the re-
maining sites. In other words, if is the number of neigh-
bors of among in the graph (the
“size of the boundary set of ”), then there are

operations associated with the visit to( neigh-
bors plus a loop through the states of ). Therefore, if

, then the maximum-likelihood config-
uration can be found in

operations.
Actually, things can be better than this. Suppose

is not connected (in the graph structure of). The
maximization on is not necessarily dependent upon all
of the bounding variables of the set . In fact,
one need only fix the values of the variables at those sites
that isolate theparticular connected component containing

. Thus, should be interpreted, more favorably, as the
largest boundary of a connected componentcreated by the site
visitation schedule .

This makes a substantial difference. In Fig. 3, with visita-
tion schedule no connected set is gen-
erated with boundary size greater than one: and only

operations are needed. Of course order matters: any
visitation schedule that starts with will immediately incur

computations.

Remarks:

1) None of this would really work on a big problem, say with
, even if were small. The functions rep-

resent probabilities, and whenis large, the probability
of any configuration is exponentially
small and would generate an underflow. Therefore, in
practice, we maximize the logarithm ofinstead of it-
self. Products (such as above) are re-
placed by sums (such as ),
but otherwise the procedure and the reasoning behind it
are the same.

Fig. 3. Star-shaped dependency graph.

2) Sometimes, an will produce a tie. These can be
decided arbitrarily, in which case one of possibly many
maximum probability configurations will be found.

3) There is a more-or-less obvious modification that finds
the most likely configurations, for any .

4) Often anoptimalordering, in the sense of achieving the
minimum , is transparent, more or less by inspec-
tion. But the problem in general, for arbitrary graphs, is
NP-hard. See Arnborget al. [30].

2) Marginal and Conditional Probabilities:Often, the ob-
jectof interest isamarginalorconditionalprobabilitydistribution
on a subset of the variables. What is the probability of conges-
tive heart failure in a 50-year-old male with swollen ankles and
pneumonia? What is the probability that a particular decoding,
for example, the maximum-likelihood decoding, is actually cor-
rect given the output of a noisy channel and given that codewords
are (say)a priori equally likely? These conditional probabilities
are quotients of marginal probabilities—probabilities on config-
urations of subsets of the variables. The coding example requires
the marginal probability of the observed channel output, and this
involvesa summationofprobabilities overall possible inputs; for
a medical application, we may need to compute marginal prob-
abilities on small subsets of variables, associated with diseases
like congestive heart failure and pneumonia, attributes like age
and sex, and signs and symptoms like swollen ankles.

The general problem is, therefore, to compute the probability
of a configuration of states for a subset of variables, given a
Gibbs distribution on an associated graph. There is again a
dynamic programming principle, operating in much the same
way as in the calculation of a most likely configuration. This is
probably best illustrated by example.

Consider again Fig. 3, and suppose we wish to calculate the
marginal distribution on . Then for each value of and

we will need to sum out the other seven variables

The apparent computational cost is , but if we pay attention
to the order of summation then this can be reduced to less
than . We again define a site visitation schedule, say

and t his a gain dictates the sequence of
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calculations: define

and then finally

In essence, the two schemes, for maximizing and for sum-
ming, are the same. Pick a visitation schedule, fix the variables
on the boundary of the connected set containing the current site,
and then either maximize or sum. In either case, the number of
elementary computations is no worse than

Aswehavesaid,conditionalprobabilitiesarequotientsofmar-
ginalprobabilities,soconditionalprobabilitiesarealsoamenable
to dynamic programming. But this will not always work! At least
not when there are a large number of “observed” variables—vari-
ables upon which we condition. The problem is again numerical:
theapriori probabilityofanyoneconfigurationof theobservable
variables is exponentially small, but this very same probability
is the denominator of the quotient representing the desired con-
ditional probability. If, for instance, a block code transmits 1024
bits, then theunconditionedprobability of receiving any partic-
ular 1024-bit word is hopelessly small—much too small to be
computed with a summation scheme like the one recommended
above. On the other hand, theconditionalprobability of, say, the
most likelytransmitted word, given the received word, will typi-
cally be order one. What we are after is a ratio of two very small
numbers, and we need to use caution to avoid gross numerical
error.

One way around this is to mix the computations of the numer-
ator and denominator in such a way as to avoid exponentially
small terms. It turns out that this is easiest to do if we com-
pute theinverseof the conditional probability, rather than the
conditional probability itself. To illustrate, let us writefor the
“unobservable” components andfor the “observable” compo-
nents and for the complete vector of variables. The Gibbs
distribution has the form

and, therefore,

where is the dimension of .

The inverse, , is then

Our only interest is in efficiently summing over, so let us
make things transparent by fixingand and writing

in which case the problem becomes the evaluation of

The clique structure is the same as we started with, and therefore
so is the dynamic programming principle and the number of op-
erations. This time, however, there are no numerical problems.
Consequently, we will take this approach when, in Section IV-B,
we compute some posterior probabilities of maximum-likeli-
hood decodings.

III. L INEAR GRAPHS

Linear dependency graphs come up in many applications:
speech recognition, convolutional coding, filtering, and control,
among others. In general, there is an observation vectorand a
“state vector” , and a joint dependency structure like the one
in Fig. 2(a) or 2(b).

In a speech recognition system,might represent a portion
of a phoneme uttered as part of a word, or perhaps even a pair
of words, so that the state space is potentially quite large, repre-
senting the word or pair of words in addition to the phoneme and
phoneme fraction. The observableis some representation or
encoding of the associated acoustic signal, or more precisely, the
signal as it has been recorded by the microphone. In the speech
application, this particular dependency graph comes out of the
much-used hidden Markov model, under which

and

or

The joint distribution is clearly Gibbs with respect to the graph
in Fig. 2(a) or 2(b), depending on which model is used for

.
The object of interest is, of course, the configuration, and as

we have already noticed, its posterior distribution, given, cor-
responds to a simple linear graph. So the computational com-
plexity, whether computing a MAP sequence or
the posterior probability of such a sequence, is no worse than

(using a left-to-right or right-to-left visitation schedule).
Furthermore, in many applications, most transitions
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are ruled out,a priori, meaning that for most
. This can help substantially: if the software can be

structured to efficiently ignore the zero transitions, then instead
of operations, we can expect something more like ,
where is the “arity” or number of possible transitions from a
state .

A. Convolutional Codes and Memoryless Channels

Convolutional codes also give rise to linear dependency
graphs, though the neighborhood structure is generally richer
than the nearest neighbor system of first-order Markov pro-
cesses. We shall formulate, here, convolutional decoding as
an instance of dynamic programming for general graphs, and
recover the well-known Viterbi algorithm [5], [31]. There is
nothing new in this exercise (in particular, see [7] and [9]), but
our general viewpoint does suggest some extensions that may
be of some practical value. One could, for instance, perform
exact maximum-likelihood decoding even when the channel
noise is not white. Such Markov dependency within the error
process might afford a good model of bursting (see [20]). In
this case, the dynamic programming principle still holds and
the maximum-likelihood decoding is still computable, at a
modest increase in computational cost. Furthermore, the exact
posterior probability of the maximum-likelihood decoding is
also computable, for about as much additional computation as
was used for the decoding itself.

Recall that an convolutional code is defined
through a generator matrix of the form

...
...

...
. . .

where each is a submatrix. For convenience, we will
stick to binary codes, so that the elements ofare in .

To maintain the connection with Section II, we introduce
the following (somewhat unusual) notation: will be the

upper-left submatrix of ,
will represent theth block of information bits ,
and will represent the corresponding block of
code (output) bits. If and ,
then .

Since cliques determine computational complexity, it is
useful to observe that

...

...

...

Fig. 4. Second-order posterior dependency of a convolutional code(m = 2).

Thus, the dependency of on has the form

with the understanding that depends only on
the last arguments when .

Suppose the codewordgoes through a channel and oc-
casionally gets corrupted. Let be the th bit of the th code
block and let be the cor-
responding output bit. The usual channel model has the form

where are independent and identically distributed (i.i.d.), so
that

Hence,

where

The clique structure, and hence the computational complexity
of dynamic programming, would be unchanged by any of a
rich collection of prior models on , governing the arrival of
information bits. Since under the uniform prior, the posterior
distribution is proportional to , maximum-likeli-
hood decoding is the same as MAP decoding, and the (maximal)
cliques are of the form . For example,
the dependency graph for the case is depicted in Fig. 4.
The obvious site visitation schedule is which
incurs a maximum boundary of sites and hence a maximum
computational cost of ( since )
at any one site. With sites, the number of operations needed to
compute the MAP (or maximum-likelihood) decoding is, there-
fore, . This is, of course, the well-known Viterbi
algorithm.

Suppose turns out to be the maximum-likeli-
hood block of information bits. It would be a good idea to com-
pute the associated probability that is correct: . As
we have already seen more generally in Section II-C-2, these
probabilities are computed by a straightforward adaptation of
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the same dynamic programming (Viterbi) algorithm that gave
us in the first place.

B. Burst Errors

One way to model burst errors is with a Markov noise process
where and represents

a transmission error ( or ). The typical state is
presumably “ ,” but an occasional transition occurs to “,” and
there is some tendency to stay at “.” If

then the situation can be modeled by making(the probability
of initiating a burst) very small, and , being the
average burst length. The channel model is then completed by
introducing an initializing probability , in
which case the model for is

Many elaborations are possible (as developed, for example,
in [20], and connected to graphical models in [7]), including,
for instance, state-dependent bursting in which statistics of
depend on the transmitted data , but the Markov model em-
bodied in and is sensible and, in any case, suitable for
illustration.

What are the implications for computing maximum-likeli-
hood (or MAP) decodings? Introduce the error indicators

if
else.

Then

in light of the relation between and .
Evidently, then, the situation is not much different from the

simple i.i.d. channel model. This time, the maximal cliques have
the form which is an expansion
over the i.i.d. model by only one site, and therefore the most
likely decoding and its posterior probability can be computed
with operations, or about times the decoding
cost under a white-noise model.

IV. PRODUCTIONSYSTEMS AND TREE-STRUCTUREDGRAPHS

From the computational viewpoint, the primary virtue
of linear graphs is that the computational cost of dynamic
programming grows linearly with the number of variables,
even while the configuration space grows exponentially. More
general lattice graphs, such as with and nearest
neighbor interactions, behave differently. A
sublattice of will achieve a maximum boundary of at least

, no matter what the site visitation schedule.
Computation, therefore, grows exponentially (in) whenever

.
In between the linear graph and the lattice graph (with )

are tree-structured graphs, which fortunately also admit site vis-
itation schedules with bounded maximum boundaries. As an
example, consider the tree-structured (but cyclic) dependency
graph on in Fig. 5.

Label the sites at level, from left to right, by
and consider the “bottom-up, left-to-right” site visitation sched-
ule: The largest
boundary encountered for any connected component has size

, and this is independent of, the depth of the
tree. Since there are nodes, the number of dynamic
programming operations for computing probabilities and
most likely configurations of associated Gibbs distributions
is . Thus computation grows linearly with the
number of variables for Gibbs distributions on tree-structured
graphs.

Because of their computational advantages, tree-structured
dependencies are attractive modeling tools (e.g., [32], [33]).
They also come up naturally when working withproduction
systems, which define the so-called “context-free” grammars
studied in formal linguistics ([4]).

In this section, we will introduce a suite of error-correcting
codes that are based on, or in any case admit representations
in terms of, production systems. (As we shall see, the approach
turns out to be nothing more than a reformulation of Forney’s
“Squaring Construction,” [21]. See also Gore [34], for an ear-
lier but less developed squaring-type construction.) In compu-
tational linguistics, the range of the (vector of) leaf-node vari-
ables is known as the “yield” or “language.” In our application,
the range is a set of permissible codewords rather than a set of
well-formed sentences. In either application, whether to linguis-
tics or coding, the tree structure is exploited to design efficient
computational algorithms.

In way of illustration, let us examine some of the computa-
tional consequences of a formal grammar representation of the
even-parity code. A context-free grammar (in “Chomsky normal
form”—see [4]) consists of a finite set of nonterminal symbols,

, a start symbol , a finite set of terminal symbols ,
and, for every , a finite set of production rules, each of
the form

or
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Fig. 5. Tree-structured dependency graph. The leaf nodes of theX-graph represent a codeword, from a context-free code, and theY nodes represent the output
of a memoryless channel.

In general is allowed, but a reduction to
Chomsky normal form is always possible (again, see [4]). Typ-
ically, there is a multitude of production rules for each .
The language, or yield, of the grammar is the set of strings of
terminals that can be derived from through repeated appli-
cation of the production rules.Probabilisticgrammars include
a collection of probability distributions, one for each ,
that dictates the choice of production rules. This induces a prob-
ability distribution on the yield.

In linguistics, usually denotes a parsed sentence, where
the nonterminals represent sentence fragments, such as noun
phrase, verb phrase, prepositional phrase, article, noun, and so
on, and the terminals represent lexical items, typically words.
But suppose, instead, that , , ,
and the production rules are

(3)

Then, evidently, the yield is exactly the set of all nonempty,
finite, binary strings with an even number of ones.

We can connect this to Markov random fields, and block
codes, by fixing a binary graph structure, assigning to
the root node, assigning terminal states to the leaf nodes, and
assigning nonterminal states to the nonleaf nodes. Consider, for
example, the balanced binary tree in Fig. 6. Instead of (3), we
adopt the production rules

(4)

at levels , and

(5)

at level . A sequence of information bits can be turned
into a state configuration on the graph by assigning each bit to
one of the triangles in the tree. The bit associated with the
apical (root) triangle is used to choose between the productions

and . This fixes the states of the daughter
sites (at level ), and then two more information bits are

read and two more productions are applied (to the level
states), thereby determining the states of the four-level
sites. Encoding continues through the information bits,
resulting in a specification of states at every site in the graph.
In this manner, a length even-parity codeword is produced at
the leaf nodes, inducing a one-to-one correspondence between
sequences of information bits and length even-parity
codewords. A simple example, with , is given in Fig. 7,
where information bits have been placed in the center of the tri-
angles, and where the conventions “bit apply first pro-
duction” and “bit apply second production” have been
used to translate from information bits into states, via equations
(4) and (5).

The random variables are , , ,
with state space when , when ,
and when . The production rules induce clique
functions—one for each triangle. In most instances, the “natural
prior” is the uniform prior (in which case maximum-likelihood
decoding is MAP decoding), which results, evidently, from a se-
quence of i.i.d. “balanced” information bits. The cor-
responding clique functions are if

and otherwise ( is always ), for the apical
(root) node triangle; and if is
the parity of and otherwise, for the remaining
triangles.

In summary, Fig. 6 depicts an MRF (“”) in which the mar-
ginal distribution on leaves concentrates on the even-parity code
of length ; the marginal distribution depends on the distribu-
tion on information bits; and in particular, the marginal distri-
bution is uniform when the distribution on information bits is
uniform.

Imagine now a channel, let us say memoryless for the
time being, through which the leaf-node variables are trans-
mitted and possibly corrupted, and eventually received as

. If, for example,
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Fig. 6. Even-parity code viewed as the yield of a context-free grammar.

Fig. 7. Even-parity code. The information sequence1100010 is coded as
01001101.

with i.i.d. , for some variance , then

and the joint dependency graph has the structure depicted in
Fig. 5.

It is immediately evident that the posterior distribution has the
same structure as the prior, and hence, in light of our earlier dis-
cussion about dynamic programming on trees, the most likely
(or MAP) even-parity word can be computed in “linear
time”—the number of operations grows linearly with the di-
mension of the code. Of course, there are other effi-
cient ways to “soft-decode” the even-parity code, but bear in
mind that the “reliability,” , is also calculated for about
the same cost.

Obviously, it would be desirable to extend this representation
beyond the even-parity code. One way to do this is to generalize
the production system ((4), (5)) that generates the even-parity
code. In Section IV-A, we will formulate production systems
that yield other (usually familiar) error-correcting codes. Then,
in Section IV-B, we will study the computational implications
for computing maximum-likelihood (or MAP) decodings, and
for computing the probability that the decoding is correct, given

transmission across a memoryless channel. In Section IV-C, we
will examine the extensions to Markov models for bursty chan-
nels.

A. Context-Free Codes

There are many ways to generalize. Here we will stick to
binary codes, balanced, binary, tree-structured graphs, and a
symbol set (state space) that depends only on level. We will
assume that the number of productions per symbol also de-
pends only on the level, and furthermore we will restrict our-
selves to block codes with minimum distance, for some

. If the number of productions per symbol is al-
ways a power of two, then the encoding scheme that we used
for the even-parity code generalizes directly: just “peel off” the
number of bits needed to specify a production (this depends only
on the level—not on the state), working down from the top. Ob-
viously, there are other, less restrictive ways to map informa-
tion bits into productions, but we will confine ourselves to this
simple case by devising production rules in which the number
of choices depends only on the level and is always a power of
two.

Look again at Fig. 6. At every (nonterminal) node, each
possible state can itself be thought of as representing a code;
namely, the set of derivable terminal sequences of thesubtree
defined by the chosen node. Site, for example, is the root
node for the terminal sequence of sites ,
and (resp., ) if and only if has

even (resp., odd) parity. In this way, anat level represents
the even-parity code of length , and an represents the
corresponding odd-parity code.

More generally, let be the non-
terminal symbols (states) of a level-site. (Later, will depend
on , .) If we want a code with minimum distance ,
then, evidently, the yield of , as expressed at the terminal sites

must itself be a code with minimum dis-
tance no smaller than . Taking a hint from the even-parity
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code, suppose that each represents a length, distance ,
code (just as and at level represent length , distance

, codes), and thatthe distance between any two of these
codes, is at least (just as the even- and
odd-parity codes are distance apart). Then the pro-
ductions

define level symbols , each
of which represents a length , distance , subtree code,
and, furthermore, whenever .
Each code is just a union of Cartesian products, so the
construction could be written more traditionally as

where represents Cartesian product (concatenation)

What we have is just one example of Forney’s (twisted)
“squaring construction” [21]. The even-parity code is a special
case with , , and . There is nothing
special about the particular “twisting” , and, in
fact, other ways of combining and are possible and often
desirable, as we shall see shortly. The point for now is that such
constructions can be iterated, “bottom up,” thereby defining
symbols and productions all the way up to the root node at
level (where any of the states
could be used as a start symbol). These productions define
a tree-structured dependency graph, and through this, a
ready-made computational engine for soft decoding and other
decoding calculations.

Of course, the construction assumes that we start with a set
of level- codes, , with certain distance properties and certain
separations. One way to get at this is to generalize even further:
replace the set of separated codes by
a hierarchy of codes with a hierarchy of separations. This more
elaborate representation falls out of a hierarchical representation
for itself, which we will now construct.

The elements of will be represented by symbols
. The integer coefficients are restricted

by , where , for each .
There are, then, vectors ; we will
set up a one-to-one correspondence between these and the
elements of .

The correspondence is built inductively. Start by representing
with the symbols

Now build the representation for from an already-built rep-
resentation for , through the formula

(6)

where integer and
. In way of example, let us work through the

particulars when and

and equals the matrix shown at the bottom of this page.
The representation is useful because it makes explicit a hier-

archy of distance properties, as can be verified inductively

(7)

whenever . An immediate consequence is that

since each is evidently distinct and there are just the
right number of them. Beyond this, the distance properties lead
more-or-less directly to a hierarchy of codes and separations (as
we shall see momentarily), and this hierarchy, in turn, leads to
the representation of various codes in terms of production rules.
The reader may recognize the representation as a version of
Forney’s iterated squaring construction [21], albeit with a new
notation. The combinatorial function is not partic-
ularly special, and many others could be used (corresponding
to different “twistings”). In [21], Forney introduced an espe-
cially canonical twisting (see Appendix A) for which we will
later develop an exact coarse-to-fine version of the dynamic pro-
gramming algorithm (in Section V). But let us first develop the
sought-after grammatical representation, since this is indepen-
dent of the particular twisting (and, hence, combinatorial func-
tion) used.

Right away we get a hierarchy of codes and separations, just
by taking unions over indices: for eachand each

, define

(8)
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Evidently, in light of (7), is a distance code (with

codewords), and furthermore

(9)

whenever . What is more, the construction of
from (see (6)) translates into a construction of

from . If then

We have, therefore, for any , a production system

for

for productions are `` singletons''

(10)

which, along with the conventions and ,
yields a distance code for every and every

, . The meaning of the
case is that, from level down, no more information
bits are encoded; the codeword is already determined by the
configuration at level .

We started with the even-parity code. To recover the even-
parity code, as a special case, just take and identify
with and with for all .

RM Codes: A Canonical Class of Context-Free
Codes: Since, as Forney has shown [21], the RM codes
can be derived from an iterated squaring construction, it is
natural to seek a grammatical representation for them. It turns
out that the RM grammar is identical to the grammar presented
above, with the sole exception being that a different choice of
combinatorial function (or twisting) is required. We present
a brief derivation of this fact in Appendix A. In Section V,
we will exploit the grammatical structure of the RM codes to
develop a more efficient maximum-likelihood decoder based
on the notion of coarse-to-fine dynamic programming.

B. Memoryless Channels

The random variables situated at the leaf nodes,
, make up the codeword—the bits that are actually

transmitted. Returning to the channel models of Section III,

the simpler model corrupts bits independently (memoryless
channel)

where represents the received signal and
is an independent noise process. In this case

and we get the joint dependency graph depicted in
Fig. 5.

We ran some experiments with the RM code
, transmitted at low signal-to-noise ratio through a

Gaussian channel: . Following
tradition, we have assumed BPSK modulation

. For the memoryless channel, the dependency graph
of the posterior is the same as the dependency graph
of the prior , and is tree structured under the grammatical
representation of RM . See Fig. 5, where for the purpose
of organizing the computation we can simply ignore the sites
belonging to the received vector. In each of 50 trials, we
computed both the maximum-likelihood decoding, and
the associated “reliability” . As suggested earlier, we
used the “bottom-up” site visitation schedule ,

, , , which makes for
about 80 000 operations per decoding cycle and per posterior
probability calculation. In computing , we were careful
to avoid underflow, by following the recipe given at the end of
Section II-C.2.

The results are summarized in Table I, whererepresents
the correct decoding and is the Hamming distance to
the maximum-likelihood decoding. Notice that the single de-
coding error is well anticipated by the low posterior probability

.

C. Burst Errors

What are the computational implications of a channel model
with Markov memory? Let us take another look at the model
for burst errors discussed earlier in Section III-B, but this time
in the computational context of a tree-structured prior.

The channel model introduced in Section III-B represents
bursts by a Markov error process such that

. In terms of the initial probability distribu-
tion on , and the transition probability ma-
trix for Prob , the channel
model can be written

where if , and otherwise. Of course, there
are other models, that perhaps make more sense in a particular
application ([20]), but the computational costs will be the same
or similar for many of these variations.

Since , we get the joint dependency
graph, for , by starting with the (tree-structured) depen-
dency graph for , and appending with sites for and with
cliques introduced in the channel model, . Since is a
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TABLE I
RM (2; 6) WITH BPSK MODULATION AND ADDED WHITE GAUSSIAN NOISE. TYPICAL DECODINGS ANDTHEIR POSTERIORPROBABILITIES. FIRST COLUMN IS

TRIAL NUMBER; SECONDCOLUMN IS HAMMING DISTANCE BETWEEN THEMAXIMUM -LIKELIHOOD DECODING AND THECORRECTCODEWORD; THIRD COLUMN

IS THE PROBABILITY ASSIGNED TO THEDECODING UNDER THE POSTERIORDISTRIBUTION. AT � = 1, MAXIMUM LIKELIHOOD YIELDED ONE DECODING

ERROR (IN TRIAL #3) IN 50 TRIALS. NOTICE THAT THE LOW POSTERIORPROBABILITY (0:3790) SIGNALS AN ERROR. THE NEXT

LOWESTPROBABILITY WAS 0:5866, BELONGING TO A CORRECTDECODING

Fig. 8. Tree-structured code through a Markov channel. (a) Joint(X; Y ) dependency structure. (b) Dependency structure onX , underP (xjy).

function of and , and since is a function of and
, introduces a clique made up of the four sites asso-

ciated with the four variables and . Taking
this into account, and taking into account the tree-structured
prior on , we arrive at the joint dependency struc-
ture depicted in Fig. 8(a). As we have noted before, conditioning
does not change the graph structure. Theposteriordependency
graph comes from simply removing the sites representing the
received signal as depicted in Fig. 8(b).

Compare the dependency graph onin Fig. 5 to Fig. 8(b).
Channel memory introduces new neighbors among the leaf

nodes. An optimal ordering of site visits is no longer obvious,
and may, in fact, depend upon the various sizes of state spaces
at the various sites. But there is a particular ordering that
does the job at a cost of no more than 16 times the cost of
decoding the simpler memoryless channel analyzed earlier.
Before writing down this particular visitation schedule, which
may appear at first glance to be rather complex and arbitrary,
it might be better to first describe, less formally, the resulting
dynamic programming process.

The optimization (soft decoding) is based on subtrees. The
subtree rooted at ( and ) is made up
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of and the two “daughter” subtrees rooted at and .
Suppose that for each of the two daughter subtrees the optimal
“interior” has been calculated, which is to say the optimal as-
signments of states conditioned upon all possible assignments at
the triangles’ respective corners—the root ( or ) and,
for each root, the corresponding pair of corners sitting at level

( or ). Then
the optimal interior of the level-subtree can be computed by
“merging” the daughter subtrees. The merging involves visiting
(maximizing over) the rightmost corner of the left daughter sub-
tree, the leftmost corner of the right daughter subtree, the root
node of the left daughter subtree, and then, finally, the root node
of the right daughter subtree. Merging continues, “upwards,”
until eventually the optimal interior of the entire graph is calcu-
lated, conditioned on the configuration at the graph corners,

, and . The global optimum is then computed after a max-
imization at each of these three remaining sites.

The procedure is summarized more formally through a set of
do-loops defining the visitation schedule (see the bottom of this
page).

In effect, every production from incurs a 16-fold increase
in computation cost: the two remaining interior leaf nodes (right
node of the left daughter and left node of the right daughter),
with four configurations, are visited once for each of the four
configurations of the two leaf nodes that sit at the corners of the

subtree.
As usual, the ordering (and computational analysis) applies

equally well for probability calculations, including the posterior
.

V. THINNING AND EXACT COARSE-TO-FINE

Dynamic programming can get out of hand, computation-
ally. The graph structure, for example, may be bad: there may
be no site visitation schedule that avoids large boundaries. The
two-state two-dimensional Ising model, on the square
lattice, is the prototypical example (cf. [35]). The worst loops

have at least operations, no matter in what order sites
are visited, and interesting lattices begin with or even

. But even a good graph structure does not guarantee
a feasible computational problem. Sometimes the state spaces
are too large. The codes of Sections III and IV have good graph
structures but in some instances very large state spaces.

How large are the state spaces under the grammatical repre-
sentations of the RM-like codes introduced in Section IV? Fix

(code length ) and fix (code distance ). The com-
putation of the number of states at a particular site does require
some care, since not every available symbol is actually used. At
level there are symbols, but only one is actu-
ally used—the designated “start” or “sentence” symbol. Still,
the number of symbols employed at a given site is independent
of theparticular start symbol, and in fact depends only on the
level, (see [36])

states of a level-site

This leads to large state spaces, even for more-or-less
modest values of . The code RM , with
(length ) and (distance ), generates 2,
4, 16, 256, 16 384, 1 048 576, 1 048 576,states, at levels

respectively. The worst of it, from
the dynamic programming viewpoint, would appear to be the
loops associated with the level– cliques, which are triangles
involving one level- site and two level- sites. Naively, there
are operations in this loop, and this is, of
course, infeasible.

But the calculation is naive since the clique function iszero
for the vast majority of these triples. Nonzero contributions are
made, only, by those pairs of level-symbols that represent an
allowed production from a level-symbol. The number of op-
erations associated with a triangle is the number of symbols at

Do l = 2; p % loop over levels

Do i = 1; 2p�l % loop over sites at level l

% Create a connected component of “interior” sites of the subtree

% rooted at sli by “merging” the subtrees rooted at sl�12i�1 and sl�12i

Visit s0(i�1)2 +2 % visit the right-most corner

% of the subtree rooted at s
l�1
2i�1

Visit s0(i�1)2 +2 +1 % visit the left-most corner

% of the subtree rooted at sl�12i

Visit sl�12i�1 % visit the root node

% of the left subtree

Visit s
l�1
2i % visit the root node

% of the right subtree

End do

End do

% All that remains are the corners of the tree …

Visit s01

Visit s02

Visit s
p
1
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TABLE II
THE PERFORMANCE OFCTFDP RELATIVE TO DP. FOR SIX REPRESENTATIVETHINNED RM CODES, THE TABLE COMPARES THENUMBER OF DECODING

OPERATIONSREQUIRED BY EXACT DP WITH THE AVERAGE NUMBER OF OPERATIONS FROM ASERIES OFCTFDP DECODING SIMULATIONS. CODEWORKSWERE

TRANSMITTED ACROSS AMEMORYLESSAWGN CHANNEL (STANDARD DEVIATION �) WITH BPSK MODULATION

the apex level times the number of productions per symbol. If,
therefore, we loop first over productions, given a symbol at the
apex, and then over symbols, then the number of operations will
be , where is the number of productions per level-
symbol. This latter number is independent of both the partic-
ular symbol and the particular level-site, as is evident from the
production formulas. For the RM codes, for
and for , so that in the particular example
there are 1, 1, 1, 2, 16, 1024, and 1 048 576 productions for levels

and respectively.
The product is biggest when : each of the two

level- sites contributes about opera-
tions. The cost of decoding, or of evaluating a posterior proba-
bility, is about

since is the number of sites at level, and this is about
operations. This may be feasible, but it would be impractical in
most applications.

We will suggest a few remedies. One (coarse-to-fine dynamic
programming) is more or less generic, in that it applies in prin-
ciple to any problem of finding a most likely configuration under
a probability with a given graphical dependency structure. An-
other (thinning) is special to the problem at hand: decoding the
grammatical codes introduced in Section IV.

A. Thinning

As we have just seen, the computational cost of max-
imum-likelihood decoding or computing a posterior probability
for a typical context-free code like RM trans-
mitted across a memoryless channel is a simple function of
the state-space cardinality and the number of productions.
Although the coarse-to-fine dynamic programming (CTFDP)
algorithm (see Section V-B) can reduce decoding complexity,
sometimes by several orders of magnitude, the really large con-
text-free codes are still undecodable, at least from a practical
point of view.

Consider for example the code RM . With an infor-
mation rate of and distance , its (maximum-like-
lihood) decoding complexity exceeds the level–contribution
of operations! RM is patently undecod-
able. But suppose one systematically pruned its grammar, dis-

carding productions (and associated information bits) to reduce
decoding complexity. What sort of code would emerge from
this process? Alternatively, one could imagine imposing strict
limits on the cardinality of each level’s state space and inquiring
whether the resulting system remained a consistent context-free
grammar. These equivalent approaches yield a family of con-
text-free codes that we will refer to asthinnedcodes.

We present a brief introduction to thinned codes in Ap-
pendix B (though a fuller treatment is available in [36]).
The thinned RM code RM , defined to be a
subcode of RM with the number states (or pro-
ductions) at any level not exceeding, is readily decodable
by the exact maximum-likelihood decoding algorithms of
Section IV in at most (loosely) operations. For example,
RM , a linear subcode of the un-
decodable code RM , is decodable in
approximately operations. In other words, by discarding
only half the information bits from RM we can de-
code the remaining thinned code at least times faster.
Moreover, using the coarse-to-fine approach of Section V-B,
RM can be decoded an additional three to 30 times
faster depending on the signal-to-noise ratio (see Table II).

As a general rule, thinned RM codes are poor codes in terms
of coding gain and other performance measures. However, they
are useful in the context of context-free codes, because they
allow one to vary decoding complexity (often by orders of mag-
nitude) by simply altering a single parameter. One speculative
direction for future inquiry is the following problem. Given a
thinned RM code with a known and manageable decoding com-
plexity, can one find a set of combinatorial functions (or twist-
ings) that optimize the coding gain of the iterated squaring con-
struction?

A far more promising approach than thinning for the max-
imum-likelihood decoding of context-free codes is the method
of CTFDP.

B. CTFDP Programming

CTFDP is what Pearl [37] would call an “admissible
heuristic,” meaning that it is a variation on dynamic program-
ming that is meant to save operations in a typical problem (it is
a “heuristic”), but, at the same time, it is guaranteed to solve the
optimization problem (it is “admissible”). The well known
is an admissible heuristic, as is the iterated complete path (ICP)
algorithm of Kim and Kopac [38], [39]. CTFDP is a kind of
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Fig. 9. CTFDP. Darkened circles indicate a chosen path of super states. States along the chosen path are refined and dynamic programming is repeated. In panel
(d), dynamic programming yields a path of singletons, at which point the optimal path has been computed.

hierarchical, or multiresolution, version of ICP invented by C.
Raphael [22]. We employ it here in order to reduce (sometimes
dramatically) the computational cost of maximum-likelihood
decoding. Unfortunately, the ideas behind the method do
not extend in any obvious way to the problem of computing
posterior probabilities.

The topology of the dependency graph is irrelevant, but the
idea of CTFDP is perhaps best illustrated with a simple one-
dimensional lattice. Let have joint probability
distribution

and let have common finite-state space
(range) . The idea is to coarsen into a small number of
“super states,” and to perform multiple passes of dynamic pro-
gramming on super states, successively refining super states on
each pass. Formally, for each “coarsening”
we define a partition of with elements in such a
way that is recovered at coarsening , and refines

.

1) ( partitions ): , and
;

2) ( refines ): for every and
every there exists
such that

3) ( recovers ): .

So , are just the individual elements of
.
Now suppose that for any, and any and , we could

find a “heuristic cost” such that

1)

and

2)

remember that and are singletons

Then we could perform dynamic programming on super states,
starting with the partition , and using the costs

. Since presumably , this first
dynamic programming would be quick. We now refine: each
(super) state along the optimal path (as chosen by the previous
dynamic programming pass) is refined into its subset of super
states from the next lower level of coarsening

Now the state spaces are larger than at the first pass, but
still, presumably, not nearly as large as. Another dynamic
programming pass generates another sequence of super states,
and the refinement/dynamic-programming cycle continues.
Evidently, a path will eventually consist only of single states

and, evidently, in light of properties (1) and (2) charac-
terizing the heuristic, this single-state path solves the original
optimization problem.

Fig. 9 describes how this process might proceed on a simple
linear graph. Super states are delineated by boundary marks, and
the super states along an optimal path are indicated by darkened
circles. Here, , , , and the refinements are
all binary

and , are the individual states
and . The path chosen in Fig. 9(d) consists only of

single states, so the process ends here, meaning that

CTFDP may or may not find the optimal solutionefficiently.
There seems to be a rather subtle relationship between the struc-
ture of the problem at hand, and the savings won (or lost!) in
a coarse-to-fine implementation. As it turns out, in the case of
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squaring constructions, the relationship is often highly favor-
able, and it is worthwhile, therefore, to look at generalizations
beyond the simple one-dimensional lattice.

It is clear enough how to proceed for more general graphs.
Introduce a hierarchy of super states at every node, and define a
heuristic cost for every clique function

where is a vector of super states, with one component super
state for each site , and where means com-
ponent-wise membership. Our first choice for a heuristic cost
would naturally be

(11)

if this were actually computable at a less than prohibitive cost.
As we shall see shortly (Section V-C), this “ideal heuristic” has a
simple analytic representation for the (canonical) squaring con-
struction, and hence for codes of the type developed in Section
IV as well as the variants of these discussed in Section V-A.
This is perhaps a little surprising, and it has the fortunate con-
sequence that CTFDP for these codes is particularly convenient
and sometimes spectacularly efficient.

C. Exact Heuristics

Recall from Section IV that with grammar-based (squaring)
constructions, clique functions are (up to a multiplicative con-
stant) just – valued, indicating un-allowed or allowed produc-
tions, respectively. The “ideal heuristic” suggested in (11), ap-
plied to the clique , is then also binary,
simply indicating the existence of an allowed production within
the coarsened states

if production

with and

otherwise

for any three super states, , and at the three sites , ,
and . It is useful to think of this as defining “super-state
productions”: the production is allowed if there is a
corresponding production among the constituent states.

With this choice of super-state productions for a context-free
code , any given set of state-space partitions on the under-
lying graph—possibly consisting of super states of varying de-
grees of coarseness and possibly differing from node to node
at any level—uniquely determines asuper codecontaining .
Clearly, any codeword in can be derived from this super-state
grammar; given the codeword , there exists a super-state
derivation tree that corresponds (by the definition of super-state
productions) to the codeword’s original state derivation tree and
has the bits of as its terminal assignments. Thus, each such
super-state grammar generates a super code containing.

The CTFDP algorithm proceeds by progressively refining
the super state grammar. Given the solution of the previous
dynamic programming (DP) problem—an optimal derivation
tree corresponding to a minimum-cost super codeword, we
determine whether the optimal derivation tree contains any
non-singlet super states. If so, we refine these super states,

recomputethesuperstateproductions,solvethenewDPproblem,
and again examine the optimal derivation tree. If not, we stop:
the current optimal derivation tree represents the minimum-cost
codeword. Since the final derivation tree contains only states
from ’s own grammar, it certainly generates a codeword (in).
Moreover, this codeword is, by definition, the minimum-cost
super codeword in the final super code—a code that contains

itself.
Although this CTFDP algorithm must eventually produce a

solution to the given optimization problem, it need not neces-
sarily outperform standard DP. For the procedure to converge
rapidly, the number of refinements and subsequent DP compu-
tations must be minimal. This suggests that super states should
consist of aggregations of “similar” states so that their costs
more closely reflect those of their constituents. In addition, the
determination of super state productions must not be too com-
putationally demanding. Remarkably, at least in the case of RM
codes, one can, in fact, find a natural choice of super states that
addresses these concerns, resulting in a substantially faster max-
imum-likelihood decoder.

Using the partitioning scheme introduced in Appendix C,
we can implement a CTFDP version of maximum-likelihood
decoding for the RM codes. Table II presents the average ratio
of CTFDP to DP operations from 50 trials with each of four RM
codes and two thinned RM codes (see Section V-A). Except
for the very smallest code RM , the CTFDP algorithm
computes the maximum-likelihood codeword substantially
faster on average with an efficiency increasing as the code size
or signal-to-noise ratio increases. In the case of RM , the
coarse-to-fine procedure is five orders of magnitude faster than
the effectively impractical DP approach!

APPENDIX A
RM GRAMMARS

In this appendix, we present a brief derivation of the RM
grammar. We refer the reader to Kochanek [36] for a fuller ac-
count.

Originally in Section IV-A, our indexing system for gram-
matical symbols was designed to reflect a geometric hierarchy
of minimum distances and separations. In the linear context,
both the indexing scheme and distance properties of symbols
emerge naturally from the algebra of RM codes. Each binary
string in can be uniquely expressed as a sum of coset rep-
resentatives

where and . We choose our coset
representatives for the quotient group RM RM

according to the scheme

where is the -bit binary representation of the integer
and is the generator matrix of -fold
Kronnecker products of the form of weight

ordered lexicographically by label —largest first.
Note that the generators and serve as a
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basis for as do their corresponding-fold Kronnecker prod-
ucts for . For a complete discussion of set and group parti-
tions of (upon which much of this discussion is based) see
[21].

One can verify by induction [36] that these symbols have a
familiar hierarchical structure. In fact, the iterative rule for con-
structing symbols is

where and . But by an
application of the additivity rule for this linear representation of

the grammatical hierarchy of Section IV-A emerges

Notice that the combinatorial functionhas been replaced by
the alternative mod where rep-
resents the bitwise exclusiveOR operator.

Thus, we see that the derivation of the RM grammar is simply
a matter of choosing the appropriate twisting. Instead ofwe in-
troduce a “canonical” twisting which corresponds to Forney’s
“iterated group squaring construction” and essentially serves to
linearize the grammatical hierarchy. To distinguish the two de-
velopments, we label the RM symbols with the letter(instead
of ), and everywhere replaceby . Then for the RM grammar

1) equation (6) (with in place of and in place of )
constructs (inductively) , a linear representa-

tion of ;
2) equation (8) (with in place of ) produces a collection

of distance codes , representing

RM

and its cosets in ; and
3) the productions in (10) (with in place of and in

place of ) define a grammatical realization of the codes
.

APPENDIX B
THINNING

For the class of context-free codes constructed in Section
IV-A and generated by RM-like grammars, one can bound the
size of the state space without disrupting the coherence of the re-
sulting context-free grammar. Suppose, for example, we impose
an upper bound of on the number of allowed productions in
an intractably large context-free grammar of this type. The yield
of this reduced grammar is a subcode of the original one—a
thinnedcode. We define the thinned RM code RM

to be the code generated by the start symbol and

productions

with terminals and . Note
that the number of productions is now

(adopting the convention that for or ).
A careful examination of its grammar (see [36]) reveals
RM to be a linear
subcode of RM with symbols (or states) at
level . Of course, if we set the unthinned grammar
for RM is recovered.

The decoding complexity of thinned codes is controlled by
the limiting parameter . By definition, the number of produc-
tions is bounded above by . Surprisingly, this condition in-
duces a similar restriction on the state-space cardinality. Thus,
the number of operations required to decode the thinned RM
code RM is loosely upper-bounded by (
sites, states per site, productions per state), a large
but fixed multiple of the code length.

We conclude our discussion of thinning by observing
that one could as easily have thinned a general context-free
code—simply by making the appropriate substitutions ;
such codes would exhibit all of the above features except
linearity.

APPENDIX C
STATE-SPACE PARTITIONS

To implement a CTFDP version of a given DP problem, one
must first partition the problem’s state spaces into hierarchies
of super states. In this appendix, we present one particularly
effective choice of super states for thinned RM codes.

We begin by introducing a more compact notation for the
thinned RM grammar. The set of allowed symbols at levelfor
the code RM can be re-expressed as

where the integer label is derived from the indexes
of by

concatenation of binary representations. Specifically, let
be the -bit binary expansion of , and let
be the concatenation of these expansions. Then

is the integer with binary expansion( ).
The label denotes the correspondingstate of an allowed
symbol. The number of states at levelis (see [36])
whereas the number of productions allowed at levelis

.
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Among the advantages of this scheme is that single and mul-
tiple productions can be jointly expressed as

where the auxiliary integers and are defined by the
correspondences

and

and the binary operator is the same as itself—bitwise
exclusive-OR, introduced for notational convenience. In
these expressions, is the -bit binary expansion of

and is the -bit expansion of
(or if ). Note that for single

productions (i.e., ), the strings and have

length and can, therefore, be ignored; however, for
multiple productions they cannot be ignored.

A further distinction of this scheme is that the multitude of
productions for the RM code RM can be readily
computed from a comparatively small set of stored inte-
gers—the parameters and the set
of auxiliary ’s and ’s, one pair of integers for
each state at each level . But of far greater consequence is
the foundation we have established for constructing a simple
system of state-space partitions for thinned RM grammars.

The basic partition at level is constructed as a succes-
sion of binary refinements of the set of states. There are

coarsenings, , each with

super statesdenoted by the pair at
coarseness. Specifically, we define the coarsened symbols

for .
The extraordinary feature of our choice of super states is that

they inherit the underlying structure of the RM grammar. In fact,
these coarsened symbols obey the recursive set relation (proved
in [36])

(12)

where and are simple functions of the auxiliary integers
and , respectively, while and depend only on the level

and coarseness. Although this coarsening scheme is some-
what cumbersome to express mathematically, its computational
implementation is straightforward and facilitates the remarkably
fast CTFDP decoding algorithm presented in Section V-C.

For example, since the hierarchy of coarsened symbols
retains the underlying RM structure, the run-time compu-
tation of super-state productions required by the CTFDP
procedure is trivial. If , , and are
super states at the respective sites, , and , then

is an allowed super-state produc-
tion if and only if shares a (suitably sized—see [36]) binary
prefix with and shares a binary prefix with
for some ; for if this condition is met, there
is an allowed state production contained within the postulated
super-state production. We are thus able to compute super-state
productions by inspection!
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