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Dynamic Programming and the Graphical
Representation of Error-Correcting Codes

Stuart GemanMember, IEEEand Kevin Kochanek

Abstract—Graphical representations of codes facilitate the  We will concentrate here on two particular kinds of compu-
design of computationally efficient decoding algorithms. This is tations: computation of the most likely configuration of a col-
an example of a general connection between dependency graphsyaction of random variables, and this configuration’s associated

as arise in the representations of Markov random fields, and the . . ey o
dynamic progranfming principle. We concentrate on two com- probability. In the context of maximume-likelihood (“soft”) de-

putational tasks: finding the maximum-likelihood codeword and ~ coding, we calculate these functionals underpbsteriordis-

finding its posterior probability, given a signal received through tribution—the conditional distribution on the transmitted code-
a noisy channel. These two computations lend themselves to awords given the received signal. What codeword was most likely
particularly elegant version of dynamic programming, whereby  yansmitted? What is the conditional probability that this max-

the decoding complexity is particularly transparent. We explore . - . . 5
some codes and some graphical representations designed specifi'—mum'l'ke'IhOOd codeword was in fact transmitted? In other

cally to facilitate computation. We further explore a coarse-to-fine  Words, we will compute thenaximum a posteriofMAP) esti-
version of dynamic programming that can produce an exact mator of the transmitted codeword and the (conditional) proba-

maximum-likelihood decoding many orders of magnitude faster hijlity that the estimator is actually correct. MAP decoding gives

than ordinary dynamic programming. the most likely codeword, and therefore minimizes the prob-
Index Terms—Dynamic programming, graphical models, max- ability of a decoding error. If, alternatively, we seek to mini-
imum-likelihood decoding, soft decoding. mize the number of information-bit errors, then we would max-

imize the posterior marginal at each information bit. In general,
these are not the same thing, and the better choice is clearly
. . . problem-dependent. MAP makes sense when the codeword rep-
B Y now, nearly everyone in the coding community knowgesents a logical unit, perhaps a product name, a price, a cate-
about the tight relationship between the dependency strigsry, or an English word. On the other hand, a stream of infor-
ture on a set of random variables and the costs of computiRgtion bits with naa priori structure calls for minimizing the
certain functionals on their joint distribution. One way to depjt-error rate.
duce this relationship is to generalize, more-or-less straightfor-rpig paper is about using graphical representations of codes
wardly, the principle of dynamic programming (Bellman [1])gnd probability models of channels to calculate the exact MAP
but it can be arrived at from many other directions as well. l#ecoding and its probability. The emphasis is on finding rep-
fact, an amazing history of discovery and rediscovery emerg@sentations and algorithms that make these calculations com-
from a diverse range of applications. Indeed, in one way gtationally feasible. It should perhaps be pointed out that, al-
another, the “forward—backward” algorithm [2], “peeling” [3].though the connections between graphs, codes, and computa-
“parsing” [4], the Viterbi algorithm [5], the “sum—product” al- tjon are currently the subjects of intense research, most of the
gorithm [6]-[9], “bucket elimination” [10], and “evidence prop-efort is in a somewhat different direction. The emphasis, in-
agation” [11]-{13], all rest on this very same dynamic-programead, is on iterative decoding algorithms that are generally not
ming principle. Oftentimes there is a good reason for usingact and whose convergence properties are generally not well
one variation over another. With one approach, there may fggerstood, but often exhibit, nevertheless, spectacular perfor-
a book-keeping scheme that avoids duplicating computatioRgance. Many codes which would be impossible to decode ex-
with another, the computational flow may be particularly trangctly lend themselves effectively and efficiently to iterative de-
parent or convenient. The best choice is typically dictated by tBSding, in some cases even approaching channel capacity. Gal-
computational constraints and the functionals of interest. lager’s [14] low-density parity-check codes and associated iter-
ative decoding algorithm are probably the first examples, but
few if any recognized the power of Gallager's construction.
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search, since these codes, as well, have natural graphical Mpae introduce two (not necessarily exclusive) methods for
resentations, come equipped with an iterative decoding algeducing the computational demands of maximume-likelihood
rithm, and appear to perform near optimally in certain regimedecoding. The first is a “thinning” algorithm which controls
Wiberg and collaborators (see [6] and [7]) picked up on Tanneomputational costs by reducing information density. The
graphs and turbo codes, and within a general treatment of codesond, coarse-to-fine dynamic programming [22], is a kind
on graphs made connections to soft decoding, general charofainultiscale version of dynamic programming that produces
models (with memory), and iterative and noniterative decodiragprovably optimal configuration, often with greatly reduced
algorithms. MacKay and Neal (see MacKay [18] for a thorougtomputation. We present an exact coarse-to-fine algorithm
discussion) developed some of these same themes, and, adi-some “context-free” codes, including the RM codes,
tionally, introduced related codes and decoding methods thatapd demonstrate thousandsfold improvements in decoding
pear to be among the current best performers. The connectiefficiency.
and common themes among all of these approaches, as well as
to a broader framework including Bayesian inference, Markov 1. DEPENDENCYGRAPHS AND COMPUTING
random fields, belief propagation, and the modern theory of
expert systems, seem to have been first understood and mo
clearly formulated by Kschischang and Frey [19]. pr
Our goal in this paper is twofold. We first present a brief tu- (21
torial on Markov random fields (MRFs), dependency graphs, ’

and the noniterative computation of various functionals on mayz. gifficult is it to compute things like the marginal distri-
ginal and posterior distributions. In the remainder of the papgi,iion on X,, or the most likely configuration:, ..., x,?

we present some new results on how to apply these cOmPYgse than anything else, the dependency relationships among
tional strategies to facilitate the maximum-likelihood decodlng]e random variables dictate the complexity of computing
of graphical codes. As we have said, our focus is somewhat ifz.se and other functionals @. Dependency relationships
ferent from the current trend, in that we concentrate on repre;, pe conveniently represented with a graphical structure,
sentations that allow exact computation, and on new meth which the complexity of various computations can be
for reducing computat.ional_complexity. B_utin light of the Ofte,'?nore or less “read off.” These graphical representations, and
good performance of iterative methods, it would be of great if5eir connection to computing, are the foundation of modern
terest to systematlcally compare iterative and exact compug;(-pert systems [11]-[13] as well as of speech-recognition
tions in a decoding problem that Iends_ itself to both approaCh?échnologies [2], [23]. In fact, the connection is quite general,
We have not yet made these comparisons. having emerged and re-emerged in these and many other
Section Il is about generic computational issues on graphgpjication areas, such as genetics [3], coding theory [5], [17],
There is an especially transparent connection between grag fputational linguistics [4], and image analysis [24].
that represent dependency structures and the efficient calcularhis connection between graphs and computing is funda-
tion of a most likely configuration and its associated probabilityental to the modern treatment of soft decoding, and we begin
This is essentially the_“bucket elimination” glgorlthm, an_d |t_|$]ere with a brief tutorial. (See also Frey [25] for an excellent
perhaps the most straightforward of the various generalizatiqRgoduction to some of the same material.) Our approach to
of dynamic programming. There is no need to triangulate, RRaphs is through Markov random fields, and our computational

need to construct junction trees, and no need to worry about €Yeys is on computing most likely configurations and their
cles. Conveniently, the computational cost is readily calculategresponding probabilities.

once a site-visitation schedule has been established. Further-

more, it is often the case that the most efficient site-visitatio parkov Random Fields and Their Gibbs Representations

schedule is immediately apparent from the general structure of . i
the dependency graph. For the purpose of constructing dependency graphs, itis con-

In Section Ill, we consider the simplest possible Casgenient to index random variables by a general finite index set

graphs with linear structure. We review their connection tg rather th<_’:1n_ the more trad|t|onf_:1l s{a_t,_2,..., n}. If state
convolutional codes and revisit Viterbi decoding from the MREPacesare f|n|t_e,_theXi ={Xs}seslis aﬂmte yectorpf random
viewpoint. We point out that the (posterior) probability that thganables with f|n|te range. In most applications, different com-
Viterbi-decoded signal is correct can be calculated as eadi§neNts have different state spaces, but merely for the sake of
as the decoding itself, and we discuss extensions to chanfgfaner notation, we wil assume a common (and finite) range
with Markov memory, designed to model burst noise [2of?- Thus,P IS aprobablllty_orfR ‘ .

[7]. In Section IV, we generalize to the case of tree-structuredP IS aMarkov rgndo_m f|elc(l\/_|RF) with respect to a grsaph
graphs and make a connection to production systems %d:_{s’ N} it P is strictly positive(P(z) > 0, Ve € R?)
context-free grammars. We reformulate Forney’s squari

construction [21] to obtain a grammatical representation of

the Reed-Muller (RM) and other related codes. Moreover, Plas|sw) = Plas{weheen.) @

we discuss the computational complexity of soft decodiq%
or of evaluating posterior probabilities for both memoryless
and Markov communications channels. Finally, in Section ¢ S indexes the nodes df;

%ven a collection of random variables,,...,X,, and a
obability distribution

coy Zp) =Prob{X; =1 ... X,, = z,}

rall z and alls € S, where
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* % (turn arrows into edges and then connect all parents of each
N % _A6) daughter).
! X X X0 If our only interest is in graphical representations of Gibbs
% / \ ° ° @ distributions, then strict positivity can be relaxed. In particular,
(7) even if we drop the conditiod.(z.) > 0 in the definition of
% Gibbs distributions, we still have the Markov property (1) @rt

% provided that we avoid conditioning on events with probability

zero. Thecomputationaanalysis of graphical models, asitturns
out, relies only on the implication Gibbs MRF. Therefore, we
shall proceed without the positivity constraiidt. > 0), which
would otherwise be troublesome in some of our applications.

Fig. 1. Dependency graph for a simple Markov random field.

o N ={N;}scs is the neighborhood structure 6f mean-
ing thatt € AN, if and only if t # s and there is an edge

connectingt ands in G; and B. Marginal and Posterior Distributions

* sz is shorthand foz; }rcs\s. In just about every application of MRFs, including coding,

The distribution on the random variable associated with any s are interested in making inferences about a subset of

s€e S, given the values of all other random variables, depenﬁ]ﬁ variables given observations of the remaining variables.

only on the values of the neighbors. This generalizes the famillhat makes MRFs useful in these applications is the fortu-

one-sided Markov property. nate fact that theconditional distributionon the unobserved
An example withS = {1, 2,..., 10} isin Fig. 1. The graph variables given the observed variables (i.e., fhasterior

summarizes many (conditional) independence relationshigéstribution) is an MRF on the subgraph of obtained by
For instance, restricting to “unobserved” sites. The conditional distri-

bution on X1, Xo, X5, X7, Xg, Xg, X10, given X3, Xy,
P(xr|z1, 22,23, 24, T35, L6, T8, T9, L10) = P(a7|xs5, 26, 23) and Xg—see Fig. 1—is Markov wrt the subgraph at sites
{1, 2, 5, 7, 8, 9, 10}, which in this case happens to be linear.
Up to a constant, conditional distributions are just joint distri-
P is Gibbswith respect to a grapé = {S, A’} if P can be butions with some of the variables fixed, so the statement about

P($1|$2, L3,L4,L5, L6y LTy Ly LY, 3710) = P(a:l |$2, 373).

represented as their dependency structure follows immediately from the Gibbs
representation.
P(x) = H F.(z.) 2 Hidden Markov models (speech recognition [23], Kalman fil-
cec ters [28], etc.), and hidden Markov random fields [29], have de-

pendency graphs like those in Fig. 2, where we have labeled the
observable variables of the model usifig, and the unobserv-
* Cisthe set of cliques i@, i.e., the set of fully connected able ones using'’s, in order to distinguish them. In Fig. 2(a) and

where

subsets of5 (including singletons); (b), the posterior distributior?(x|y), is Markov wrt the linear
o 2 = {z, }scs) 2o = {25 }see; and graph; in Fig. 2(c) it is Markov wrt the nearest neighbor lattice
graph.

* eachl is a positive function. The goal is usually to make an inference abd&ytgivenY'.

Such representations are certainly not unique: constants caherefore, it is significant that the graphical structure repre-
“shifted” (multiply one term, divide another) arfd. can be ab- senting the distribution oiX’ givenY is no more complicated
sorbed intaF,, whenevere C ¢. than the original structure, since, as we shall see shortly, this
The main tool for working with MRFs is the representatiostructure determines computational complexity. In this regard, it
theorem of Hammersley and Clifford [26], [27}.is MRF with is reassuring that models such as those in Fig. 2 form a very rich
respect to (wrty; if and only if P is Gibbs wrtG. One direction class: the set ofnarginal distributionson Y, obtainable from
is easy: it is straightforward to verify that (2) has the requirefthite-state space hidden nearest neighbor Markov models is es-
Markov property. But the other direction (MRF wft= Gibbs sentially everything (up to arbitrary approximation, see [29]).
wrt G) is not easy. It does, though, make easy the proof th@ahe way to understand this is to examine the graphical structure
MRFs wrt linear graphs are Markov processes (i.e., that (1) irof the marginal distribution oft”. Consider the Gibbs represen-
plies the more familiar “one-sided” Markov property). tation: when theX variables are summed (integrated) out, new
Referring to Fig. 1, the cliques are the singletons, the paicques are introduced. Two sitesandt, in theY subgraph will
{{1, 2}, 11, 3}, {3, 4}, {2, 5}, {4, 5}, {5, 6}, {5, 7}, {6, 7}, be connected under the marginal distribution}orfafter inte-
{7, 8}, {8, 9}, {9, 10}}, and the triple{5, 6, 7}. P MRF wrt grating outX) if s and¢ are already connected under the joint
the graph in Fig. 1 means th#&t can be factored into terms (X, Y') distribution,or if there exists a path, traveling strictly
each of which depends only on the components representedhirough theX variables, that connectsand¢. So the marginal
one of these cliques. An analogous relationship appears in theY’, in the cases depicted in Fig. 2, will in general define a
study of Bayes nets, which use directed acyclic graphs (DAG#)lly connected graph! (Just check that there is always a path
If P “respects” a DAG (ifP’ factors into conditional probabili- | o o
Another variant is the Tanner graph (cf. [15], [25]), in which clique func-

tie_s of individual daughter nodes_given their parent nodes) thﬁﬂ\s are represented explicitly as specially designated nodes in the dependency
P is Markov wrt the corresponding undirected “moral” graplaraph.
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X . .
! % o 10, 9, 8,7, 6, 5, 4, 2, 3, 1. In general P has the factorization
P(JC) =F1,2($17 $2)F1,3($17 $3)F2,5($27 xs)F3,4($37 354)
X Fy 5(xa, 25)F5 6,7(x5, 6, v7)F7 8(77, T3)

X Fy o(xs, x9)Fy, 10(z9, 10)

()

= O—CO«
2 O— =
= O—C0«

|

|

|

|

Y ¥ Y where, for convenience, we have absorbed sub-cliques into
super-cliques. Following the site ordering, address first:
compute

X % X X X Xa1 X

W N o Rio(xg) = arg max Fy 10(xg, )
rER.
(b) and
Cho(zg) = Fy 10(x9, R1o(z9)).
Notice thatzy “isolates” z1o from the other components, and
Y; Y, Y; Y, Yn-1

Rio(v) is the value ofry, that participates in the most likely
configuration, if that configuration involvesy = v. Cio(v) is
the corresponding contribution from terms involviag,, eval-
uated atcg = v. Sincexg is next on the list, ands isolateszg
andzyo from the other components, compute

Ro(xg) = arg Iglea% {Fs o(xs, 2)Cro(z)}

©)

and

Cy(zg) = Fy o(xs, Ro(xs))Cro(Ro(xs))

to get, respectively, the value of participating in the optimal
configuration (giverncg) as well as the contribution from terms

Fig. 2. (a) and (b) Hidden Markov models, and (c) a hidden Markov randofVOIViNg zg andz 1. As for zs
field .
Rs(z7) = arg max {F7, (27, )Co(x) }

“through X” connecting any two components &f.) This ob- and
servation comes (easily—again!) from the Gibbs representation. Cs(x7) = F7 s(x7, Re(x7))Co(Rs(x7)).

(The condition for creating neighbors in a marginal distribution

is necessary, but not quite sufficient—hence the disclaimer §|1° fhar this is ftandardsdynam|ck;gog;r]rammg]g bﬂtallls fora
general.” Consider, for example, slight generalization. Since it takbsthz; andzg to isolater-,

zs, Tg, andzio from the remaining variables, compute
Pla, g1 y2) = Plalys, v2) Plyn) Plye). Rr(ws, xe) = argrnax {F5,6,7(25, 26, ©)Cs(2)}
ThenY; andY>; are marginally independent and
Cr(z5, z6) = F5,6,7(z5, x6, R7(xs, 76))Cs(R7(z5, 6))-
P(y1, y2) = P(y1) P(y2) o S
Proceeding in this way, always isolating what has been done

yet they are neighbors in the joint distributiandthey are con- from what has not been done, we compute
nected by a path throughi.)

Re(zs) = arg max Cr (x5, )
C. Computation Co() 207(%7 7?«6(375))

1) MostLikely Configurations:Computing a mostlikely se- _(z, 7,) = arg max {Fy, 5(x2, ) Fy 5(2a. 2)Co(x)}

guence of words given an acoustic signal, a most likely i |mage ’
restoration given a corrupted picture, or a most likely code-Cs(z2, z4) = F2, 0(9727 Rs(w2, 24))Fy, 5(xs, Rs(z2, 24))
word given a channel output, means computing a most likely x Ce(R5(x2, z4))
configuration under a posterior distribution. In light of our re- A ) = arg max {Fy 4(z3, 2)C
marks about the dependency structure of conditional distribu- ’

(w2, x3) = I3, 4(373, Ra(z2, £3))Cs(
to maximize a probability distribution that is Gibbs relative to Ry(x1, z3) = arg max {F1 2(x1, )C4

( )Ca(

)

s(22, 2)}
x2, Ra(x2, 23))
(z, z3)}

L2, T3

tions (Section 1I-B), it is evident that the generic problem is Cs
some given grapg.

Consider again the simple example in Fig. 1. If, for instance,C2(%1> w3) =1, (“71’ Ra(21, 23))Ca(Ra(21, w3), 23)
R = {1, 2,..., 20} then there ar0'° possible configurations Ra(w1) Co(z1, )}
and exhaustive search for the most likely one is impractical. On
=F
the other hand, we could use a kind of (generalized) dynamic Cslz1) = 1’3($1’ Ra(w1))Calw1, Ra(@1))
programming: choose first an ordering of the nodesgin say Ry =arg max Ca(x).

arg max {F1 3(z1,
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‘R, is the value ofr; that participates in the most likely con-
figuration (with the corresponding co§ly = C3(Ry)). Ev-
idently, then,R5(R;) is the corresponding value of;, and
R2(R1, R3(Rq1)) the corresponding value af;, and so on,
back through the graph.

The most likely configurationz is thereby computed with
many fewer operations than required in a systematic (brute-
force) search. How many operations are needed? The worst of
it is in the computation oR 7, R5, R4, andR», each of which
involves a triple loop (e.g., with regard t8B;: for every x;
and everyzg find the bestr;) and hence ordefR|*> opera- Fig-3. Star-shaped dependency graph.
tions. Since there are 10 sites, and no site requires more oper-
ations tharO(|R|?) an upper bound on the computational cost 2) Sometimes, aarg max will produce a tie. These can be

is O(10|R3). decided arbitrarily, in which case one of possibly many
This procedure generalizes. For any graplwith n sites maximum probability configurations will be found.

let s, s2, ..., s, € S be a "site visitation” schedule. How  3) There is a more-or-less obvious modification that finds

much work is involved in “visiting” a site? When visiting,, the k most likely configurations, for ang > 1.

we need to compute the besf, for each possible configura-  4) often anoptimal ordering, in the sense of achieving the

tlon_ on the_ set of sitethat |solat<_esl,_32, ..., s from the re- MINIMUM N, is transparent, more or less by inspec-

maining sites. In other words, iV}, is the number of neigh- tion. But the problem in general, for arbitrary graphs, is

bqrs ofsy, s2, ..., s @MONGSx11, .- ., Sn, INthe graphy (the NP-hard. See Arnborgt al. [30].

“size of the boundary set ofy, so, ..., s¢”), then there are

O(|R|N++1) operations associated with the visitt@NV, neigh- 2) Marginal and Conditional Probabilities:Often, the ob-

bors plus aloop through the states:gf). Therefore, itV,,,x = jectofinterestisamarginal or conditional probability distribution

max{Ni, Na, ..., N,}, then the maximum-likelihood config- On & subset of the variables. What is the probability of conges-

uration can be found in tive heart failure in a 50-year-old male with swollen ankles and

pneumonia? What is the probability that a particular decoding,

O(n[R| Vot for example, the maximum-likelihood decoding, is actually cor-

rect given the output of a noisy channel and given that codewords
are (sayp priori equally likely? These conditional probabilities
operations. are quotients of marginal probabilities—probabilities on config-
Actually, things can be better than this. Suppases,, urations of subsets of the variables. The coding example requires
..., s is not connected (in the graph structure @. The the marginal probability of the observed channel output, and this
maximization onz,, is not necessarily dependent upon alnvolvesasummation of probabilities over all possible inputs; for
of the bounding variables of the set,, ..., z,,. In fact, amedical application, we may need to compute marginal prob-
one need only fix the values of the variables at those sitébilities on small subsets of variables, associated with diseases
that isolate theparticular connected component containindike congestive heart failure and pneumonia, attributes like age
sx. Thus, Nmax should be interpreted, more favorably, as thand sex, and signs and symptoms like swollen ankles.
largest boundary of a connected componengiated by the site  The general problem is, therefore, to compute the probability
visitation scheduley, ..., s,. of a configuration of states for a subset of variables, given a
This makes a substantial difference. In Fig. 3, with visitésibbs distribution on an associated graghThere is again a
tion scheduld, 3, 5, 7, 2, 4, 6, 8, 9, no connected set is gen-dynamic programming principle, operating in much the same
erated with boundary size greater than aNg;,, = 1 and only way as in the calculation of a most likely configuration. This is
O(9|R|?) operations are needed. Of course order matters: apipbably best illustrated by example.
visitation schedule that starts witky, will immediately incur Consider again Fig. 3, and suppose we wish to calculate the
O(|R|?) computations. marginal distribution ofz1, x3). Then for each value af; and
x3 we will need to sum out the other seven variables

Remarks:
. . P
1) None of this would really work on a big problem, say with (1, 23)
n = 100, even if NV, were small. The~ functions rep- = Z Y o(w1, 22) o, o(@2, 29)
resent probabilities, and whénis large, the probability T2, T4, B5, 86, 7, &5, B9CR
of any configuratione,,, «,, ..., z,, IS exponentially X Fy a3, £4)Fy o(2a, £9)F5_6(x5, z6)Fe, o(26, L)

small and would generate an underflow. Therefore, in
practice, we maximize the logarithm sfinstead of? it-
self. Products (such @ o(z2, 29)C1(x2) above) arere- The apparent computational costR|”, but if we pay attention
placed by sums (such &sg F> g(x2, x9) +log Ci(x2)), to the order of summation then this can be reduced to less
but otherwise the procedure and the reasoning behindhiin 7|R|>. We again define a site visitation schedule, say
are the same. 57,2, 4,6,8, 9,andt his a gain dictates the sequence of

X Fr g(a@r, vs)Fs olxs, o).
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calculations: define The inversel/P(x|y), is then
T; = F; .
O(xG) 27:% 0,6(-T7 'TG) 1 _ Z H <Fc((-757 y)c)) )
Plaly) ~ 2= LA\ E((@ v)o)
Tr(xs) = Z Fr s(x, xs) ’ i
TER Our only interest is in efficiently summing over, so let us
To(xy, xg) = Z Fy o(x, x9) 1 2(21, x) make things transparent by fixingandy and writing
z€R ~
-y Fel(@ )e)
To(g) = Z Fs. o, wo)T5(x) in which case the problem becomes the evaluation of
rCR ~
Go(Z.).
Ts(ze) = Y Fy ofw, vo)T4(x) Jz; cll
zCR
and then finally - The clique structure is the same as we started with, and therefore

Pz, 23) =To(x1, 3) sois the dyn'am.|c programming principle and the number of op-
erations. This time, however, there are no numerical problems.
= Ta(@)To(x)Tu(ws, ©)Ta(w1, ). Consequently, we will take this approach when, in Section IV-B,
zER . we compute some posterior probabilities of maximum-likeli-
In essence, the two schemes, for maximizing and for SUMsod decodings
ming, are the same. Pick a visitation schedule, fix the variables '
on the boundary of the connected set containing the current site,
and then either maximize or sum. In either case, the number of

elementary computations is no worse than Linear dependency graphs come up in many applications:
O (n|R|Nmaxt1) speech recognition, convolutional coding, filtering, and control,

among others. In general, there is an observation veciod a

_Aswe hav_e_s_a|d, cond|t|qr_1al probabllm_e_s_ arequotients Ofma‘rrétate vector'z, and a joint dependency structure like the one
ginal probabilities, so conditional probabilities are also amenable

to dynamic programming. But this will not always work! At leas TFig. 2(a) or 2(b).

) oo . In a speech recognition system, might represent a portion
notwhen there are alarge number of “observed vanables—va&-a phoneme uttered as part of a word, or perhaps even a pair

ables upon which we condition. The problem is again numeric%l'

R . ' . f words, so that the state space is potentially quite large, repre-
thea priori probability of any one configuration of the observabl enting the word or pair of words in addition to the phoneme and

variables is exponentially small, but this very same prObab'“(ghoneme fraction. The observablgis some representation or

Ill. LINEAR GRAPHS

Is the denominator of the quotient representing the desired ¢ r|]1'coding of the associated acoustic signal, or more precisely, the

ditional probability. If, for instance, a block code transmits 1025|gnal as it has been recorded by the microphone. In the speech

b:ts, ;fg)ezrltg?ncogqnlﬁneq?rob?blllty (I)If recelvrl]ntg any pe}Irttlc-ba plication, this particular dependency graph comes out of the
utar -DIt WOrd 1S hopelessly small-—much too smaf to é{gch-used hidden Markov model, under which

computed with a summation scheme like the one recommen
above. On the other hand, tbenditionalprobability of, say, the n
most likelytransmitted word, given the received word, will typi- Play, ooy ) = Pi(a) H Bi(wilaio)

cally be order one. What we are after is a ratio of two very small =2
numbers, and we need to use caution to avoid gross numerigad
error. "
One way around this is to mix the computations of the numer- — p,, 1oy 2,) = H Qi(yilz:)
ator and denominator in such a way as to avoid exponentially iy

small terms. It turns out that this is easiest to do if we con®r

pute theinverseof the conditional probability, rather than the nl

conditional probability itself. To illustrate, let us writefor the Plyrs - Ynlzn, o xn) = H Qi(yilwi, Tit1)-
“unobservable” components agdor the “observable” compo- =1

nents andzx, y) for the complete vector of variables. The GibbThe joint distribution is clearly Gibbs with respect to the graph

distribution has the form in Fig. 2(a) or 2(b), depending on which model is used for
Pz, y) =[] Fl(=: ). Plyle). _ o

ceC The object of interest is, of course, the configuratipand as

and, therefore, we have already noticed, its posterior distribution, giyeoor-
1 Fol(z,y).) responds to a simple linear graph. So the computational com-

Plaly) = ceC plexity, whether computing a MAP sequenge, ..., x,, Or
> I Fel(# y)e) the posterior probability of such a sequence, is no worse than

ETCR™ eCC n|R|? (using a left-to-right or right-to-left visitation schedule).

wheren is the dimension of. Furthermore, in many applications, most transitions, — z;
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are ruled outa priori, meaning that?;(z’|z”") = 0 for most %1 o8 X4 X X Xr

', " € R. This can help substantially: if the software can b
structured to efficiently ignore the zero transitions, theninsted  —_ - _—_ A _J—_Jm---- Q
of n|R|? operations, we can expect something morediHg R |,

wherek is the “arity” or number of possible transitions from a
Fig. 4. Second-order posterior dependency of a convolutional eode 2).

statex € R.
A. Convolutional Codes and Memoryless Channels Thus, the dependency of on has the form
Convolutional codes also give rise to linear dependency Vi = Fi(Zim, Tiomt1y -, Ti)

graphs, though the neighborhood structure is generally richgith the understanding thdt(Zo, ..., Zn) depends only on
than the nearest neighbor system of first-order Markov prene lasti + 1 arguments whefl < i < m.

cesses. We shall formulate, here, convolutional decoding assuppose the codeworgigoes through a channél and oc-
an instance of dynamic programming for general graphs, aggsionally gets corrupted. Let; be thejth bit of theith code
recover the well-known Viterbi algorithm [5], [31]. There isplock(j € {1, ..., n}, s € {0, ..., T}) and lety;; be the cor-

nothing new in this exercise (in particular, see [7] and [9]), bygsponding output bit. The usual channel model has the form
our general viewpoint does suggest some extensions that may s = Closs. mis)
i — 15 'y

be of some practical value. One could, for instance, perform
exact maximum-likelihood decoding even when the chann&heren;; are independent and identically distributed (i.i.d.), so
noise is not white. Such Markov dependency within the erréfat
process might afford a good model of bursting (see [20]). In o
this case, the dynamic programming principle still holds and Plyos -y yrlvo, -y vr) = H H (wijlvig)-
the maximum-likelihood decoding is still computable, at a =0 j=1
modest increase in computational cost. Furthermore, the exdénce,
posterior probability of the maximum-likelihood decoding is Plylx)=P
also computable, for about as much additional computation as -p
was used for the decoding itself.

Recall that an(n, &k, m) convolutional code is defined
through a generator matri¥ of the form

~

yOv"'vyT|-T07 "'7-TT)

yOa"'ayT|UOa---avT)

n
H P( UU |UU
j=1

Il
::]HA

=0
T n
Go Gy Gy - Gp O 0 0 0 -
0 Go Gy Gy -+ G 0O 0 0 - = I [T Pl (B, - 2));)
0 0 - =0 j=1

G=10 0 Gy G Gy - Gy,
' ' ' H;(yi, Ticms -, &)

|
A::H

s
Il
S

where eacl7; is ak x n submatrix. For convenience, we will
stick to binary codes, so that the element&adre in{0, 1}.

To maintain the connection with Section Il, we introduce H;(y;, z; ., - - HP Yii |(Fi(@immy -5 T4))5)-
the following (somewhat unusual) notatiofy will be the
(T + 1)k x (T + 1)n upper-left submatrix o7, z; € {0, 1}*  The clique structure, and hence the computational complexity
will represent theth block of information bit§0 < 7 < 7'), of dynamic programming, would be unchanged by any of a
andv; € {0, 1} will represent the corresponding block ofrich collection of prior models om, governing the arrival of

where

code (output) bits. I = (zo, ..., zr) andv = (vo, ..., vr), information bits. Since under the uniform prior, the posterior
thenv = z0r. distribution P(z|y) is proportional taP(y|x), maximum-likeli-
Since cliques determine computational complexity, it ifood decoding is the same as MAP decoding, and the (maximal)
useful to observe that cliques are of the forni —m, i —m+1, ..., 7). For example,
the dependency graph for the case= 2 is depicted in Fig. 4.
vo =20Go The obvious site visitation schedulels1, 2, ..., T, which
v, = (2o, 1) <G1 ) incurs a maximum boundary @ sites and hence a maximum
Go computational cost a#*(+1) (|R| = 2* sincex; € {0, 1}*)

at any one site. Wit sites, the number of operations needed to
compute the MAP (or maximum-likelihood) decoding is, there-

_Gm fore,O(T - 2*(m+1)) This is, of course, the well-known Viterbi
Um = (20, -+ Tm) | algorithm.
Go Supposet (¢ = £Gr) turns out to be the maximum-likeli-
G, hood block of information bits. It would be a good idea to com-
) pute the associated probability thato) is correct:P(i|y). As
Vidm = (Tiy -y Tigm) | ) l<i<T—-m. we have already seen more generally in Section II-C-2, these

Go probabilities are computed by a straightforward adaptation of
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the same dynamic programming (Viterbi) algorithm that gavéV. PRODUCTION SYSTEMS AND TREE-STRUCTURED GRAPHS

usz in the first place. ) ) ) ) ]
From the computational viewpoint, the primary virtue

B. Burst Errors of linear graphs is th.at the cqmputational cost of dynamic
o ) programming grows linearly with the number of variables,
One way to model bursterrors is with a Markov noise proceggen, while the configuration space grows exponentially. More
M 1125 - o ur4n Wheren, € {0, 1} andr, = 1 represents gonora) jattice graphs, such & with ¢ > 2 and nearest
a transmission errolf(— 1 or 1 — 0). The typical state is neighbor interactions, behave differently.lix TxoioxT

phresu_mably 0" bu('; an occasional Hafmsmon occurs*and - g pjattice ofZ, will achieve a maximum boundary of at least
there is some tendency to stay at™| Nuax = T971, no matter what the site visitation schedule.
Pap = Prob(ni+1 = Bl = a) Computation, therefore, grows exponentially @i whenever

then the situation can be modeled by makipg(the probability
of initiating a burst) very small, angyo = 1/u, 1 being the
average burst length. The channel model is then completed
introducing an initializing probability?, = Prob(m = «), in
which case the model fof, } is

> 2.

In between the linear graph and the lattice graph (wWith2)
are tree-structured graphs, which fortunately also admit site vis-
i@ﬁon schedules with bounded maximum boundaries. As an
example, consider the tree-structured (but cyclic) dependency
graph onX in Fig. 5.

nT4n—1 Label the sites at levé) from left to right, bys! 1 < i < 27!
P, n2, -+, Martn) = Py, H Py mega- and consider the “bottom-up, left-to-right” site visitation sched-
t=1 ule: s9, 89, ..., 8%, s1, 83, ..., 53,1, ..., 1. The largest

Many elaborations are possible (as developed, for exampgbeundary encountered for any connected component has size
in [20], and connected to graphical models in [7]), includingV,..x = 2, and this is independent qf, the depth of the
for instance, state-dependent bursting in which statisti¢ggf tree Since there aré’*! — 1 nodes, the number of dynamic
depend on the transmitted ddta }, but the Markov model em- programming operations for computing probabilities and
bodied inp,s andp?, is sensible and, in any case, suitable fomost likely configurations of associated Gibbs distributions
illustration. is O(2P*1R|®). Thus computation grows linearly with the
What are the implications for computing maximum-likelinumber of variables for Gibbs distributions on tree-structured
hood (or MAP) decodings? Introduce the error indicators  graphs.
0 if i = vii Because of their computational advantages, tree-structured
&ij { ’ g dependencies are attractive modeling tools (e.g., [32], [33]).
They also come up naturally when working wigimoduction
Then systemswhich define the so-called “context-free” grammars

1, else.

P(y|lz) = P(yo, ..., yr|wo, ..., 1) studieq in formal Iingui;tigs ([4D). . .
— P(yos -, yrlvo, .-, vr) In this section, we will mtro_duce a suite of e_rror-correctlng
" ’n_l’ ‘ ’ ’T codes that are based on, or in any case admit representations
— 2 H Per en H e, _ in terms of, production systems. (As we shall see, the approach
to.1 g So.580. 541 e} &Lf_b turns out to be nothing more than a reformulation of Forney’s
N " function of “Squaring Construction,” [21]. See also Gore [34], for an ear-

(i1, Wi vi1s¥3)

function of
(va»vo)

lier but less developed squaring-type construction.) In compu-
. tational linguistics, the range of the (vector of) leaf-node vari-
% H Pe e ables is kn_own as the “yiel_d” or “language.” In our application,

o R the range is a set of permissible codewords rather than a set of
well-formed sentences. In either application, whether to linguis-
fun((;ﬁ(y)_l)l of tics or coding, the tree structure is exploited to design efficient

Y computational algorithms.

In way of illustration, let us examine some of the computa-

tional consequences of a formal grammar representation of the

I
=

Gi(Yi-1, Yi» Vi—1, Vi)

ZTl even-parity code. A context-free grammar (in “Chomsky normal
= HGf,(yi_h Yis Tiem—1s - Ti) form”—see [4]) consists of a finite set of nonterminal symbols,
i=1 N, a start symbok € A/, a finite set of terminal symbol&’,
in light of the relation between; andz;. and, for everyd € N, a finite set of production rules, each of

Evidently, then, the situation is not much different from th&he form
simplei.i.d. channel model. This time, the maximal cliques have
the form(i — m — 1,4 — m, ..., ), which is an expansion A—BC, B, CeN
over the i.i.d. model by only one site, and therefore the most
likely decoding and its posterior probability can be compute@d
with O(T - 2k(m+2)) operations, or abo@" times the decoding
cost under a white-noise model. A —t, teT.
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S 1 Level p
p-1 p-l
§ 1 S 2 Level p-1

' Level 2
0 0 Level 1
TGO SGO D T o2P g Level
elelelelelelele 0000 ¥
YY" T Yp

Fig. 5. Tree-structured dependency graph. The leaf nodes df tgeaph represent a codeword, from a context-free code, and tiedes represent the output
of a memoryless channel.

In generald — « € (M U 7)* is allowed, but a reduction to read and two more productions are applied (to the lgvell

Chomsky normal form is always possible (again, see [4]). Typtates), thereby determining the states of the four-lgvel2

ically, there is a multitude of production rules for ea¢ke A. sites. Encoding continues through tkie— 1 information bits,

The language, or yield, of the grammar is the set of strings ksulting in a specification of states at every site in the graph.

terminals that can be derived frof through repeated appli- In this manner, a lengtt? even-parity codeword is produced at

cation of the production rule®robabilisticgrammars include the leaf nodes, inducing a one-to-one correspondence between

a collection of probability distributions, one for eaghe A, sequences & — 1 information bits and lengtB? even-parity

that dictates the choice of production rules. This induces a pratpdewords. A simple example, with= 4, is given in Fig. 7,

ability distribution on the yield. where information bits have been placed in the center of the tri-
In linguistics, S usually denotes a parsed sentence, wheaagles, and where the conventions “bit0 = apply first pro-

the nonterminals represent sentence fragments, such as midwgtion” and “bit= 1 = apply second production” have been

phrase, verb phrase, prepositional phrase, article, noun, andised to translate from information bits into states, via equations

on, and the terminals represent lexical items, typically word&) and (5).

But suppose, instead, that = {E, O}, 7 = {0, 1}, S = E, The random variables at¥_., 0 < I < p,1 < 4 < 27

and the production rules are with state spacé¢ S} whenl = p, {E, O} when0 < [ < p,
EE EO and {0, 1} when! = 0. The production rules induce clique
{ OO0 O — { OF . (3) functions—one for each triangle. In most instances, the “natural
0 1 prior” is the uniform prior (in which case maximum-likelihood
Then, evidently, the yield is exactly the set of all nonemptgecoding is MAP decoding), which results, evidently, from a se-
finite, binary strings with an even number of ones. quence of i.i.d. “balanced0.5/0.5) information bits. The cor-

We can connect this to Markov random fields, and blodkesponding clique functions afé(azsp, Lyp=ty T op- 1) = 0.51f
codes, by fixing a binary graph structure, assignihg=S)to  z_,- =, o and0 otherwise ¢,» is aIwaysS) forthe apical
the root node, assigning terminal states to the leaf nodes, Qﬂsbt) node triangle; and.(z,e, z 1, x1) = 0.50f z, : is

assigning nonterminal states to the nonleaf nodes. Consider,fpt parity ofz 1 + . o ando o%herW|se for the remammg

example, the balanced binary tree in Fig. 6. Instead of (3), Vﬁ?angles P2i-1
adopt the production rules In summary, Fig. 6 depicts an MRFX") in which the mar-
E - { EE O — { EO (4) ginal distribution on leaves concentrates on the even-parity code
00 OF of length2?; the marginal distribution depends on the distribu-
at levels>2, and tion on information bits; and in particular, the marginal distri-
E— {00 0 — {01 (5) bution is uniform when the distribution on information bits is
11 10 uniform.

at levell. A sequence o2? — 1 information bits can be turned

into a state configuration on the graph by assigning each bit }Pne being, through which the leaf-node variables are trans-
one of the2? — 1 triangles in the tree. The bit associated with th itted and possibly corrupted, and eventually received as
apical (root) triangle is used to choose between the productions. (0 yan). If, for example

E — EF andE — OO. This fixes the states of the daughte
sites (at levelp — 1), and then two more information bits are Yi = T0 + 1

Imagine now a channel, let us say memoryless for the
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Level p {E}
Level p-1 {E,O}

Level p-2 {E,O}

Level 1 {E,O}

Level 0 {0,1}
Fig. 6. Even-parity code viewed as the yield of a context-free grammar.

transmission across a memoryless channel. In Section IV-C, we
will examine the extensions to Markov models for bursty chan-
nels.

A. Context-Free Codes

There are many ways to generalize. Here we will stick to
binary codes, balanced, binary, tree-structured graphs, and a
symbol set (state space) that depends only on levwale will
assume that the number of productions per symbol also de-
pends only on the level, and furthermore we will restrict our-
Fig. 7. Even-parity code. The information sequedd®0010 is coded as selves to block codes with minimum distare for somen =

01001101, 0,1, 2, ..., p. If the number of productions per symbol is al-
ways a power of two, then the encoding scheme that we used
With 71, 12, ..., m2e i.i.d. N(0, &%), for some variance?, then  for the even-parity code generalizes directly: just “peel off” the
2? 1 number of bits needed to specify a production (this depends only
ple) = [[ = exp{-(wi — 2,0)*/20%} on the level—not on the state), working down from the top. Ob-
o V2mo? ' viously, there are other, less restrictive ways to map informa-

and the joint dependency graph has the structure depictedi@f bits into productions, but we will confine ourselves to this

Fig. 5. simple case by devising production rules in which the number
Itis immediately evident that the posterior distribution has tHf choices depends only on the level and is always a power of

same structure as the prior, and hence, in light of our earlier df4t-

cussion about dynamic programming on trees, the most likelyL00k again at Fig. 6. At every (nonterminal) node, each

(or MAP) even-parity word(z) can be computed in “linear possible state can itself be thought of as representing a code;

time"—the number of operations grows linearly with the dinamely, the set of derivable terminal sequences oftligree

mension(2” — 1) of the code. Of course, there are other effidefined by the chosen node. Sit for example, is the root

cient ways to “soft-decode” the even-parity code, but bear ftpde for the terminal sequence of S'@(i_l)w Cs U

mind that the “reliability,"p(&|y), is also calculated for aboutandz,: = £ (resp.O)ifandonlyifz,o, = ..., z. has

the same cost. even (resp., odd) parity. In this way, a‘i(fhat levell represents
Obviously, it would be desirable to extend this representatitine even-parity code of lengt®, and anO represents the

beyond the even-parity code. One way to do this is to generaliz@responding odd-parity code.

the production system ((4), (5)) that generates the even-parityMore generally, letd, i € {0, 1, 2, ..., m — 1} be the non-

code. In Section IV-A, we will formulate production systemserminal symbols (states) of a levietite. (Lateryn will depend

that yield other (usually familiar) error-correcting codes. Thewon i, m = m'.) If we want a code with minimum distan@g,

in Section 1V-B, we will study the computational implicationghen, evidently, the yield o, as expressed at the terminal sites

for computing maximum-likelihood (or MAP) decodings, and;gl(i_l)ﬁ, ..., 8%, must itself be a code with minimum dis-

for computing the probability that the decoding is correct, givelance no smaller tha®. Taking a hint from the even-parity
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code, suppose that eaeli represents a lengttf, distance2, The correspondence is built inductively. Start by representing
. . Q
code (just asE and O at levell represent lengt!, distance z; = zg with the symbo|s4?0, 0<ip<1(md= 2(s) — 2)
2! = 2, codes), and thahe distance between any two of these A0 — A0 — 1
0 — 11— -

codesd(Al, Al),i # k, is at leas2>~! (just as the even- and ¥
odd-parity codes are distaneé=! = 1 apart). Then the pro- Now build the representation fé; from an already-built rep-

ductions resentation foZ%l 1, through the formula
+1 I I . Al ; :Alil< -1, . -1 . —1, . -1
Ai - A(H—J) modm Aj’ J= 07 17 cee, T — 1 1ot e(lin/my J’zZE;nlO )76(!{21/7712 J?“’nlll,1)7 o
c(lit—1/m;_1 ], di—2,my_g), c(ie, s1—1, m;_)
definem levell + 1 symbols(: = 0,1, ..., m — 1), each % Al-1 (6)
of which represents a lengti*!, distance2®, subtree code, Liv/mi =), Lia/my ) s Loy /my 300

and, furthermored( A+t Attty > 29=1 wheneveri # k. Where|z| = sup{n: ninteget n < z} andc(n, m, k) =
Each codeA’** is just a union of Cartesian products, so thén + m)mod k. In way of example, let us work through the

construction could be written more traditionally as particulars wherd = 1 (Z3) andl = 2 (Z3)
m—1 Aé,o :Ag(o, 0,2) X Af = Ag x Ag = (00)
AE—H = U Aéi-i-j) modm % Aé’ Aé, 1 :Ag(l,o, 2) X A} = AY x A} = (11)
=0 Ai,o :Ag(0,1,2) X Ag = A? x Ap = (10)
wherex represents Cartesian product (concatenation) Ail =A3<1,1,2> x A? = A0 x AY = (01)
Ax B={(a,b):a€ A be B}. and4? ; , equalsthe matrix shown at the bottom of this page.

The representation is useful because it makes explicit a hier-

What we have is just one example of Forney's (twiste@rchy of distance properties, as can be verified inductively
“squaring construction” [21]. The even-parity code is a special g (Al Al Son (7
case withAy, = E, AL = O, andm = 2. There is nothing ( 60,y Ty o 100 io:~~~:in—uﬂ'm~~7iz) 222 (7
special about the particular “twisting% + j) modm, and, in wheneverj, # i,. An immediate consequence is that
factz other ways of combining and j are possmle apd often Z%l _ {Aéo W 0<ip < mi — 1} VI>0
desirable, as we shall see shortly. The point for now is that such hal idently disti dth ) h
constructions can be iterated, “bottom up,” thereby defini hce eachd;, ; Is evidently distinct and there are just the

symbols and productions all the way up to the root node rght number of them. Beyond this, the distance properties lead
level p (where any of then statesA”, i = 0, 1 " — more-or-less directly to a hierarchy of codes and separations (as

could be used as a start symbol). These productions defie shall see momentarily), and this hierarchy, in turn, leads to

a tree-structured dependency graph, and through this,th§ representation of various codes in terms of production rules.

ready-made computational engine for soft decoding and otﬁ—é?e re?dgr may recognize the repr'esentatlon as a version of

decoding calculations. Forney’s iterated squaring construction [21], albeit with a new
Of course, the construction assumes that we start with a g(lg{alltlon. Thel corgb|nator|alhfunct|cnf(l7;, l;n’ k) ';’ not partic- g

of leveld codes A!, with certain distance properties and certailf @'Y SPecial, and many others could be used (corresponding

separations. One way to get at this is to generalize even furtri@rdifferent “twistings”). In [21], Forney introduced an espe-

replace the set of separated codisi = 0, 1...m — 1, by clally canonical twisting (see Appendix A) for which we will

a hierarchy of codes with a hierarchy of separations. This md?éer develop an exact coarse-to-fine version of the dynamic pro-

elaborate representation falls out of a hierarchical representa§gMming algorithm (in Section V). But let us first develop the
2. . : sought-after grammatical representation, since this is indepen-
for Z; itself, which we will now construct.

S dent of the particular twisting (and, hence, combinatorial func-
The elements ofZ; will be represented by symbolstion) used

Al i, i, The integer coefﬁcien}s&o, .-, @ are restricted  gight away we get a hierarchy of codes and separations, just
by 0 < ir < m{ —1, wherem! = 2(+), for eachk = 0, ..., 1. Dby taking unions over indices: for eathnd eachiy, ..., o1
There are, ther[ [} _, m}, = 22 vectors(io, ..., i;); we will (o < 1), define

set up a one-to-one correspondence between these ag¥ the L U Al ®)
elements ofZ2 . et M,

2 1 1
A inyio = Aclin/2),i0,2), ctin,in, 2 X Aliny2),i =
Af 0.0 =(0000) AF | o=(1100) AF, o= (1010) AF ;= (0110)
Aao’l = (1111) Aal’l = (0011) A(Q)’Q’l = (0101) Aag,l = (1001)

A%,o,o = (1000) A%,I,O = (0100) A%,Q,O = (0010) A%,g,o = (1110)
A%,O,l = (0111) A%,l,l = (1011) A%,Zl = (1101) A%7371 = (0001).
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Evidently, in lightof (7),4},  ; ~
Hﬁza m!, codewords), and furthermore

d (Aéo, e Bk, kg ey fe1? Aéo,...,ik,,1,jk,,...,ja,1)
whenevey,, # ix. Whatis more, the construction pft]
from {4~ |
{A }rom{Al"! . }.If o < Ithen

10, vy ba—1
Al
L0y -y ta—1

-1
m _;—1

Uy
c(Lil/nliflj,ig, rnf;l), c(Liz/nléflj,il, rnlfl), .

=0 :

c( Lia,l/rnaillj L ta—2, rni\ilz), (i, 01, rnlaill)
-1
Liv/mi™ ), Liz/my ™ ], e, Liamy/mT L0
We have, therefore, for any > 0, a production system
{ -1
AiO: o ta—1 - A C(Lil/nlfLilJ:iO: nl(ljil)z'“:
C(Linfl/"li:,llj yla—2, "li:,lz):

(i, ta—1, nli:jl)

x A

-1

Liv/mi™ '), ) liaca/ml! )i
fori>a Vi=0,1,...,m74 —1
1

Al at
0 e(liv/mi ™" Jio,miTh), s,
e(lim1/miZ ] iz, mi 73,

(i, 411, rnﬁ:})

x A

-1

x A" _ ) 1y
Liv/mi™ s Liea/my " Lo

(for ! < «, productions aré singletonsy
(10)

which, along with the conventiond) = 0 and A? =
yields a distanc&® code Al

20Ty —

> 2k (9)
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| isadistance* code (with the simpler model corrupts bits independently (memoryless

channel)

Yi = C(xs(% 771) 1<:i< 2r

iy where yi, ..., y» represents the received signal and
} (see (6)) translates into a construction ofy, ...

, M2¢ IS an independent noise process. In this case

P(ylz) = [[ P (yilz.0)

and we get the join{X, Y') dependency graph depicted in
Fig. 5.

We ran some experiments with the RR] 6) code(p = 6,

a = 4), transmitted at low signal-to-noise ratio through a
Gaussian channep(y;|z,0) ~ N(2z,0 — 1, 1). Following
tradition, we have assumed BPSK modulatith — —1,

1 — 1). For the memoryless channel, the dependency graph
of the posteriorP(z|y) is the same as the dependency graph
of the prior P(z), and is tree structured under the grammatical
representation of RNR, 6). See Fig. 5, where for the purpose
of organizing the computation we can simply ignore the sites
belonging to the received vectgr In each of 50 trials, we
computed both the maximum-likelihood decodirig and

the associated “reliability’p(z|y). As suggested earlier, we
used the “bottom-up” site visitation scheduld, ..., s2,,

sty oo, 839, 8T, ..., ..., 8T, 8T, 83, 88, which makes for
about 80000 operations per decoding cycle and per posterior
probability calculation. In computing(z|y), we were careful

to avoid underflow, by following the recipe given at the end of
Section II-C.2.

The results are summarized in Table |, whéreepresents
the correct decoding and{ z, %) is the Hamming distance to
the maximum-likelihood decoding. Notice that the single de-
coding error is well anticipated by the low posterior probability

| foreveryl > a and every P(Zly) < 0.4.
i0.--fa-1, 0 < i < mi — 1. The meaning of thé¢ < «

case is that, from level — 1 down, no more information C. Burst Errors
bits are encoded; the codeword is already determined by thevhat are the computational implications of a channel model

configuration at levety — 1.

with Markov memory? Let us take another look at the model

We started with the even-parity code. To recover the evefar burst errors discussed earlier in Section 111-B, but this time

parity code, as a special case, just take- 1 and identify A}

with £ and A} with O for all I > 1.

RM Codes: A Canonical Class of

in the computational context of a tree-structured prior.
The channel model introduced in Section IlI-B represents

Context-Fre@ursts by a Markov error procegs € {0, 1} such thaty, =

Codes: Since, as Forney has shown [21], the RM codes « ¢, # .. In terms of the initial probability distribu-
can be derived from an iterated squaring construction, it ign p° « € {0, 1} onny, and the transition probability ma-

natural to seek a grammatical representation for them. It turpix {Paslta, sefo,1y for Prob(n.41 = Bln, = ), the channel
out that the RM grammar is identical to the grammar presentggbdel can be written

above, with the sole exception being that a different choice of op
combinatorial function (or twisting) is required. We presentp(y|z) = P (yb ey Yar
a brief derivation of this fact in Appendix A. In Section V,

—1
Peigin

i=1

T g0 ~~~$sgp) = Pe

we will eXplOit the grammatical structure of the RM codes tWhereé’Z =0if Yi = X0, andé’i — 1 otherwise. Of course, there
develop a more efficient maximum-likelihood decoder basgge other models, that perhaps make more sense in a particular

on the notion of coarse-to-fine dynamic programming.

B. Memoryless Channels

The random variables situated at the leaf no@t;;, T,

application ([20]), but the computational costs will be the same
or similar for many of these variations.

SinceP(z, y) = P(y|r)P(x), we get the joint dependency
graph, for( X, Y, by starting with the (tree-structured) depen-

SEPE make up the codeword—the bits that are actuallyency graph forX, and appending with sites faf and with
transmitted. Returning to the channel models of Section Itliques introduced in the channel mod&ly|z). Since¢; is a
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TABLE |
RM (2, 6) wiTH BPSK MODULATION AND ADDED WHITE GAUSSIAN NOISE TYPICAL DECODINGS AND THEIR POSTERIORPROBABILITIES. FIRST COLUMN IS
TRIAL NUMBER; SECOND COLUMN |S HAMMING DISTANCE BETWEEN THE MAXIMUM -LIKELIHOOD DECODING AND THE CORRECT CODEWORD; THIRD COLUMN
IS THE PROBABILITY ASSIGNED TO THEDECODING UNDER THE POSTERIORDISTRIBUTION. AT ¢ = 1, MAXIMUM LIKELIHOOD YIELDED ONE DECODING
ERROR (IN TRIAL #3) IN 50 TRIALS. NOTICE THAT THE LOW POSTERIORPROBABILITY (0.3790) SIGNALS AN ERROR THE NEXT
LOWEST PROBABILITY WAS 0.5866, BELONGING TO A CORRECTDECODING

RM(2,6) [64,22,16] AWGN with BPSK modulation, ¢ = 1
Dynamic Programming operations: 79,231/decoding
(equal number for p(Z|y))

Trial | d(Z, %) | p(Zly) Trial | d(Z, %) | p(Z|y) Trial | d(%,2) | p(2|y)
1 0 1.0000 7 0 1.0000 25 0 1.0000
2 0 0.9880 8 0 0.9844 30 0 1.0000
3 16 0.3790 9 0 0.9548 35 0 0.9983
4 0 1.0000 10 0 0.9981 40 0 0.9994
) 0 0.9990 15 0 1.0000 45 0 0.9998
6 0 0.9974 20 0 0.9999 50 0 0.9688

(a)

(b)

Fig. 8. Tree-structured code through a Markov channel. (a) §aintt”) dependency structure. (b) Dependency structur& oonderP(x|y).

function ofz ,» andy;, and since€;; is a function ofr, 0, and nodes. An optimal ordering of site visits is no longer obvious,
Yid 1) DE€sn introduces a cligue made up of the four sites assand may, in fact, depend upon the various sizes of state spaces
ciated with the four variables,o, ;. z,0 , andy;4,. Taking at the various sites. But there is a particular ordering that
i+l

this into account, and taking |nto account the tree-structurddes the job at a cost of no more than 16 times the cost of
prior on X, we arrive at the join{ X, Y) dependency struc- decoding the simpler memoryless channel analyzed earlier.
ture depicted in Fig. 8(a). As we have noted before, conditionifggfore writing down this particular visitation schedule, which
does not change the graph structure. phsteriordependency may appear at first glance to be rather complex and arbitrary,
graph comes from simply removing the sites representing tiienight be better to first describe, less formally, the resulting
received signal” as depicted in Fig. 8(b). dynamic programming process.

Compare the dependency graph.rin Fig. 5 to Fig. 8(b).  The optimization (soft decoding) is based on subtrees. The
Channel memory introduces new neighbors among the leafbtree rooted atl (2 <1<pandl <i<2r7l)is made up
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of st and the two “daughter” subtrees rootedsgt' | andsh;*.  have at leasD(2” 1) operations, no matter in what order sites
Suppose that for each of the two daughter subtrees the optiraa visited, and interesting lattices begin with= 100 or even
“interior” has been calculated, which is to say the optimal ag¥ = 1000. But even a good graph structure does not guarantee
signments of states conditioned upon all possible assignmenta &asible computational problem. Sometimes the state spaces
the triangles’ respective corners—the rodgﬁl or 312;1) and, aretoo large. The codes of Sections IIl and IV have good graph
for each root, the corresponding pair of corners sitting at levaructures but in some instances very large state spaces.
0 ((3(()1‘—1)2417 3?1_1)2421—1) or(s?i_1)21+21,1+1, 59,))- Then How large are the state spaces under the grammatical repre-
the optimal interior of the level-subtree can be computed bysentations of the RM-like codes introduced in Section IV? Fix
“merging” the daughter subtrees. The merging involves visiting(code lengtt2?) and fix « < p (code distanc@®). The com-
(maximizing over) the rightmost corner of the left daughter sulputation of the number of states at a particular site does require
tree, the leftmost corner of the right daughter subtree, the remme care, since not every available symbol is actually used. At
node of the left daughter subtree, and then, finally, the root noldwelp there arenl-m! ... m!,_, symbols, butonly one is actu-
of the right daughter subtree. Merging continues, “upwardsglly used—the designated “start” or “sentence” sym®ostill,
until eventually the optimal interior of the entire graph is calcuhe number of symbols employed at a given site is independent
lated, conditioned on the configuration at the graph corgrs of the particular start symbol, and in fact depends only on the
sV, andsY, . The global optimum is then computed after a maxevel,! (see [36])
imization at each of these three remaining sites. !
The procedure is summarized more formally through a set of

# states of a level-site

- o ) 1 l=
do-loops defining the visitation schedule (see the bottom of this T (Lael) P
page). _ N _ = ’ mb,  0<I<p-—L
In effect, every production frors; incurs a 16-fold increase k=max(0, I+a—p) - -

in computation cost: the two remaining interior leaf nodes (right
ngde of the Ieft daughter and 'Ie'ft node of the right daughteQ10dest values ofp. The code RM3,7), with p — 7
with four configurations, are visited once for each of the fo h da — 4 (di L _ o
configurations of the two leaf nodes that sit at the corners of t eengt 128) anda = 4 (distancell), generatesv’ = 2,
< subree , 16, 256, 16384, 1048576, 1048576 states, at levels

. . . 1 =20,1,2, 3,4, 5,6, 7, respectively. The worst of it, from
As usual, the ordering (and computational analysis) apph%s . ; . ;

- . . . ._the dynamic programming viewpoint, would appear to be the
equally well for probability calculations, including the posterlo[ iated with the | i hich ianal
) loops associated with the evfi%mques,.w ich are triangles
p ' involving one levelé site and two leveb sites. Naively, there
are 10485762 = 250 gperations in this loop, and this is, of

course, infeasible.

Dynamic programming can get out of hand, computation- But the calculation is naive since the clique functiorzéso
ally. The graph structure, for example, may be bad: there miy the vast majority of these triples. Nonzero contributions are
be no site visitation schedule that avoids large boundaries. Thade, only, by those pairs of levelsymbols that represent an
two-state two-dimensional Ising model, on thex N square allowed production from a leved-symbol. The number of op-

lattice, is the prototypical example (cf. [35]). The worst loopsrations associated with a triangle is the number of symbols at

This leads to large state spaces, even for more-or-less

V. THINNING AND EXACT COARSETO-FINE

Dol=2,p % loop over levels
Doi=1,2°" % loop over sites at level l
% Create a connected component of “interior” sites of the subtree
% rooted at s! by “merging” the subtrees rooted at sbt and si7t
Visit 5?7171)242171 % visit the right-most corner
% of the subtree rooted at st
Visit s?i_1)21+21,1+1 % visit the left-most corner
% of the subtree rooted at sht
Visit  shit, % visit the root node
% of the left subtree
Visit st % visit the root node
% of the right subtree
End do
End do
% All that remains are the corners of the tree ...
Visit s
Visit  s9»

Visit s
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TABLE I
THE PERFORMANCE OFCTFDP ReLATIVE TO DP. FOR SIX REPRESENTATIVETHINNED RM CODES THE TABLE COMPARES THENUMBER OF DECODING
OPERATIONSREQUIRED BY EXACT DP WITH THE AVERAGE NUMBER OF OPERATIONS FROM ASERIES OFCTFDP DECODING SIMULATIONS . CODEWORKSWERE
TRANSMITTED ACROSS AMEMORYLESSAWGN CHANNEL (STANDARD DEVIATION o) WiITH BPSK MODULATION

AVG(CTFDP)/DP Operations

Code DP Operations | ¢ =03 | 6=05 | ¢=08 |o=1.0
RM(2,5) 3,007 0.8134 0.8136 1.0266 1.693
RM(2,6) 79,231 0.1199 0.1199 0.123 | 0.2127
RM(2,7) 4,606,719 | 0.006903 | 0.006904 | 0.007029 | 0.0099
RM(3,7) 4,425388,799 | 1.136e-5 | 1.137e-5 | 1.214e-4 —
RM™(4, 8) 12,887,551 | 0.003262 | 0.003263 | 0.0052 | 0.0811
RM®(p, 10) 4,236,287 | 0.03261 | 0.03262 0.0663 | 0.3306

the apex level times the number of productions per symbol. tfarding productions (and associated information bits) to reduce
therefore, we loop first over productions, given a symbol at tlecoding complexity. What sort of code would emerge from
apex, and then over symbols, then the number of operations whils process? Alternatively, one could imagine imposing strict
be N - I', wherel! is the number of productions per level- limits on the cardinality of each level’s state space and inquiring
symbol. This latter number is independent of both the partieshether the resulting system remained a consistent context-free
ular symbol and the particular levékite, as is evident from the grammar. These equivalent approaches yield a family of con-
production formulas. For the RM coded,= m’ % forl > o text-free codes that we will refer to #sinnedcodes.
and1 for [ < «, so thatin the particular exampbe=7, o = 4 We present a brief introduction to thinned codes in Ap-
therearel1,1,1,2,16,1024,and 1 048 576 productions for levpndix B (though a fuller treatment is available in [36]).
1,2, 3,4, 5, 6, and7, respectively. The thinned RM code RW(p — «, p), defined to be a
The productV' - I' is biggest wheri = 6: each of the two subcode of RMp — «, p) with the number states (or pro-
level6 sites contributes about048 576 x 1024 = 23° opera- ductions) at any level not exceedig, is readily decodable
tions. The cost of decoding, or of evaluating a posterior probay the exact maximum-likelihood decoding algorithms of
bility, is about Section IV in at most (loosel\@?+2~ operations. For example,
: RM®)(6, 10), a linear [1024, 440, 16] subcode of the un-
2(27_1)]\71]1 decodable[1024, 848, 16] code RM(6, 10), is decodable in
approximately22? operations. In other words, by discarding
only half the information bits from RN6,10) we can de-
since2”— is the number of sites at leveland this is abou23! code the remaining thinned code at least® times faster.
operations. This may be feasible, but it would be impractical Moreover, using the coarse-to-fine approach of Section V-B,
most applications. RM®(6, 10) can be decoded an additional three to 30 times
We will suggest a few remedies. One (coarse-to-fine dynanfaster depending on the signal-to-noise ratio (see Table II).
programming) is more or less generic, in that it applies in prin- As a general rule, thinned RM codes are poor codes in terms
ciple to any problem of finding a most likely configuration undeef coding gain and other performance measures. However, they
a probability with a given graphical dependency structure. Amve useful in the context of context-free codes, because they
other (thinning) is special to the problem at hand: decoding théow one to vary decoding complexity (often by orders of mag-

i=1

grammatical codes introduced in Section IV. nitude) by simply altering a single parameter. One speculative
direction for future inquiry is the following problem. Given a
A. Thinning thinned RM code with a known and manageable decoding com-

As we have just seen, the computational cost of ma_plexity, can o_ne_find a set pf corr_lbinatoriz_:ll functions (o_r twist-
imum-likelinood decoding or computing a posterior probabilitj?9s) that optimize the coding gain of the iterated squaring con-
for a typical context-free code like Ry — «, p) trans- Struction? N o
mitted across a memoryless channel is a simple function of? far more promising approach than thinning for the max-
the state-space cardinality and the number of productioﬁg_um—llkellhood decoding of context-free codes is the method
Although the coarse-to-fine dynamic programming (CTFDF‘)f CTFDP.
algorithm (see Section V-B) can reduce decoding complexity, ,
sometimes by several orders of magnitude, the really large C(%r CTFDP Programming
text-free codes are still undecodable, at least from a practicalCTFDP is what Pearl [37] would call an “admissible
point of view. heuristic,” meaning that it is a variation on dynamic program-

Consider for example the code R, 10). With an infor- ming that is meant to save operations in a typical problem (it is
mation rate 0848/1024 and distance 6, its (maximum-like- a “heuristic”), but, at the same time, it is guaranteed to solve the
lihood) decoding complexity exceeds the levkEontribution optimization problem (it is “admissible”). The well know™
of 2mIm$ = 2'4! operations! RM6, 10) is patently undecod- is an admissible heuristic, as is the iterated complete path (ICP)
able. But suppose one systematically pruned its grammar, diggorithm of Kim and Kopac [38], [39]. CTFDP is a kind of
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Fig. 9. CTFDP. Darkened circles indicate a chosen path of super states. States along the chosen path are refined and dynamic programming isanepleated. |
(d), dynamic programming yields a path of singletons, at which point the optimal path has been computed.

hierarchical, or multiresolution, version of ICP invented by C. 2)
Raphael [22]. We employ it here in order to reduce (sometimes H;(R9, R%) = F,(RY, RY)
dramatically) the computational cost of maximum-likelihood 7 7

decoding. Unfortunately, the ideas behind the method do (rememberthaR? andRE, are singletons
not extend in any obvious way to the problem of computinghen we could perform dynamic programming on super states,
posterior probabilities. starting with the partition{R}}%  and using the costs

. The topology pf the dependenpy graph is i_rreleva_mt, but tl}?i(R]JM’ R). Since presumablyry; < mo = |R], this first

dimensional lattice. LeXo, X1, ..., X, have jointprobability (super) state along the optimal path (as chosen by the previous
distribution dynamic programming pass) is refined into its subset of super
n states from the next lower level of coarsening
P(‘T) = Ul E(‘Ti—l7 'Tl) ij i {R;w_l}{i: R;‘\lflgRJ/‘_\/{}-

Now the state spaces are larger than at the first pass, but
and let Xo, Xy, ..., X, have common finite-state spacestill, presumably, not nearly as large & Another dynamic
(range)R. The idea is to coarseR into a small number of programming pass generates another sequence of super states,
“super states,” and to perform multiple passes of dynamic prgnd the refinement/dynamic-programming cycle continues.
gramming on super states, successively refining super stategqfiiently, a path will eventually consist only of single states
each pass. Formally, for each “coarsenigg= 0, 1, ..., M R{ and, evidently, in light of properties (1) and (2) charac-
we define a partitio{R{ };~ of R with m, elements in such a terizing the heuristic, this single-state path solves the original
way thatR is recovered at coarsening= 0, and{R/} refines optimization problem.

{R§+1}- Fig. 9 describes how this process might proceed on a simple
q i . P a _ ; B linear graph. Super states are delineated by boundary marks, and
i SEJ ];zelar:tlt;ghsm' RIOR; = Vi # g, andvy the super states along an optimal path are indicated by darkened
=t T circles. Herep = 5, |[R| = 8, M = 2, and the refinements are
2) ({R?} refines{R*'}): foreveryg=0,1,...,M—land binary
everyie {1,2,...,m,thereexistg € {1,2,...,myq1}
such thatR? C R4+

3) ({RY} recoversR): mo = |R). Ri={1,2} Ry=1{3,4} R3={56} R;={7 8}

Ri=1{1,2,34} R3={56,7,8}

0+ _ L
SoRY,i = 1,2, ..., mg, are just the individual elements of‘"‘nOl Rj, @ =1,....8 are the _|nd|\_/|dual state$,_2, 3,4,
R 5,6, 7, and 8. The path chosen in Fig. 9(d) consists only of
Now suppose that for any and anyR* andR% . we could single states, so the process ends here, meaning that
, J g n
find a “heuristic cost’H,(R{, RY,) such that arg max H F(zi_y, 3) = (4, 7,7, 4,6, 5).

1) =1

CTFDP may or may not find the optimal solutiefficiently.
There seems to be a rather subtle relationship between the struc-
ture of the problem at hand, and the savings won (or lost!) in
and a coarse-to-fine implementation. As it turns out, in the case of

I
q q
Hi(R}, RL) > max  Fi(zi_1, z;)
z;_1€ERY angR;Z_,

3
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squaring constructions, the relationship is often highly favorecomputethe super state productions, solve the new DP problem,
able, and it is worthwhile, therefore, to look at generalizatiorend again examine the optimal derivation tree. If not, we stop:
beyond the simple one-dimensional lattice. the current optimal derivation tree represents the minimum-cost
It is clear enough how to proceed for more general graplmdeword. Since the final derivation tree contains only states
Introduce a hierarchy of super states at every node, and defirfecan C's own grammatr, it certainly generates a codeword’fin

heuristic cost for every clique function Moreover, this codeword is, by definition, the minimum-cost
H.(R.) > max Fu(z.) Zu;:;rel;:odeword in the final super code—a code that contains
2 CRe .

whereR, is a vector of super states, with one component superAlthough this CTFDP algorithm must eventually produce a
state for each site € ¢, and wherez, C R. means com- Solution to the given optimization problem, it need not neces-
ponent-wise membership. Our first choice for a heuristic cosarily outperform standard DP. For the procedure to converge

would naturally be rapidly, the number of refinements and subsequent DP compu-
_ tations must be minimal. This suggests that super states should
He(Re) = aER Fe(we) (1) consist of aggregations of “similar” states so that their costs

if this were actually computable at a less than prohibitive cogfore closely reflect those of their constituents. In addition, the
As we shall see shortly (Section V-C), this “ideal heuristic” has@etermination of super state productions must not be too com-
simple analytic representation for the (canonical) squaring cditationally demanding. Remarkably, at least in the case of RM
struction, and hence for codes of the type developed in Sectlkfifles, one can, in fact, find a natural choice of super states that
IV as well as the variants of these discussed in Section V-gddresses these concerns, resulting in a substantially faster max-
This is perhaps a little surprising, and it has the fortunate coum-likelihood decoder.

sequence that CTFDP for these codes is particularly convenient/sing the partitioning scheme introduced in Appendix C,

and sometimes spectacularly efficient. we can implement a CTFDP version of maximum-likelihood
decoding for the RM codes. Table Il presents the average ratio
C. Exact Heuristics of CTFDP to DP operations from 50 trials with each of four RM

Recall from Section 1V that with grammar-based (squarin

gfdes and two thinned RM codes (see Section V-A). Except
constructions, clique functions are (up to a multiplicative con-

r the very smallest code RK2,5), the CTFDP algorithm

stant) jus0-1 valued, indicating un-allowed or allowed produc—coTpUtes the mag;gwum-l]lclffe_hhood_ codeword Stl;]bStagt'a”y
tions, respectively. The “ideal heuristic” suggested in (11), affs er Orll f“’e“’%ge Wlt' ane |C|enc3|/ |r:ﬁreasmg efls © Ct(;] © size
plied tothe cliquer, = (z,:, -1 , z_-1), isthenalso binary, r signal-to-noise ratio increases. In the case of(8M), the

® 2i—1 24

. o . - i . . .coarse-to-fine procedure is five orders of magnitude faster than
simply indicating the existence of an allowed production Wlthl{'he effectively impractical DP approach!

the coarsened states

H.(R.,)=H.(A, B, C) APPENDIX A
1, if 3 productionz,; — (a:szfl LT RM GRAMMARS
= with z. € A, xg;_l € Bz,zélndx:;_l eC In this appendix, we present a brief derivation of the RM
0, otherwise e - grammar. We refer the reader to Kochanek [36] for a fuller ac-
count.

; -1
forany three super statess 53, andC atthe three siteg;, s, ", Originally in Section IV-A, our indexing system for gram-

and 31271 It is useful to think of this as defining “super-statgnatical symbols was designed to reflect a geometric hierarchy
productions™ the production — BC'is allowed if there is & of minimum distances and separations. In the linear context,
corresponding production among the constituent states.  poth the indexing scheme and distance properties of symbols

With this choice of super-state productions for a context-frggnerge naturally from the algebra of RM codes. Each binary

code(C, any given set of state-space partitions on the U”d"srt'ring inzg” can be uniquely expressed as a sum of coset rep-
lying graph—possibly consisting of super states of varying dgssentatives

grees of coarseness and possibly differing from node to node
at any level—uniquely determinessaiper codecontainingC. B o Z RO
Clearly, any codeword i@ can be derived from this super-state 05415 tp tk
grammar; given the codewokekC, there exists a super-state F=0
derivation tree that corresponds (by the definition of super-statéere0 < 4;, < m} — 1 and0 < k < p. We choose our coset
productions) to the codeword’s original state derivation tree anepresentatives for the quotient group RM- %, p)/RM (p —
has the bits ot as its terminal assignments. Thus, each suéh— 1, p) according to the scheme
super-state grammar generates a super code contéining AP i@ (p— k. )
The CTFDP algorithm proceeds by progressively refining i TORMAP T 5, P
the super state grammar. Given the solution of the previowsereiy is the (1)-bit binary representation of the integar
dynamic programming (DP) problem—an optimal derivatioandGy rm(p — k, p) is the(}) x 2¢ generator matrix of-fold
tree corresponding to a minimum-cost super codeword, W&onnecker products of the forpy ©g,, @---®g; of weight
determine whether the optimal derivation tree contains agjj ordered lexicographically by labg j. . . . j,—largest first.
non-singlet super states. If so, we refine these super stafdste that the generatogg, = (10) andg, = (11) serve as a

p
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basis forZ2 as do their correspondingfold Kronnecker prod- to be the code generated by the start syrng)I’b 0 and
ucts forZ5 . For a complete discussion of set and group parti- L —
. r . . . . .
tions of Z3  (upon which much of this discussion is based) S8froductions °
[21].
One can verify by induction [36] that these symbols have a pt.» ‘
familiar hierarchical structure. In fact, the iterative rule for con- "™ '@
structing symbols is 101 I—1,n
20 9(z0,20); -, 9(Ta—2,2a-2), 9(%, 2a—1)
_ . -1,
Bfo,il:m:ip =9 ®B§U)07;17~~71‘p71 +90®B§07]%17“~7Zp—1 = XB“”(J:":L“/’&fZ:“” asi<p
-1,n
wherexy, = |ir11/mb 1] andz, = i, mod m}*. But by an g;“”gff)l’yg’g(w“z’Z“Z)’g(w“l’f?l) a1
application of the additivity rule for this linear representation of FO5re T2, Ti—17 - -
zy : : . ,
2 with terminalsBy:" = ip and K(I) = min(l, & — 1). Note
Br L Br _pr that the number of productions is ndt = min(2", m' %)
10,81, e Tp Jo,J1s -5 Jp 9(i0,40), 9(%1, J1), -, 9(ip, Jp) (adopting the convention thi{) 2 0forl < Oorl > k).

A careful examination of its grammar (see [36]) reveals

the grammatical hierarchy of Section IV-A emerges .
g cath 4 I g RM™(p — a, p) to be a linear[22, S°7_ 2¢=tlog, I, 2]

P subcode of RMp — a, p) with N < 2" symbols (or states) at
90,71, ey bp levell. Of course, if we set > (f’yj) the unthinned grammar
= Bg(;iyzo)yg(%m?m?g(%_th_l) X Bg;;;h.wpfl. for RM (p — «, p) is recovered.

The decoding complexity of thinned codes is controlled by
Notice that the combinatorial functionhas been replaced bythe limiting parameter. By definition, the number of produc-
the alternativef (n, m, k) = g(n, m modk) whereg(-, -) rep- tions is bounded above . Surprisingly, this condition in-
resents the bitwise exclusiar operator. duces a similar restriction on the state-space cardinality. Thus,

Thus, we see that the derivation of the RM grammar is simplige number of operations required to decode the thinned RM

amatter of choosing the appropriate twisting. Insteadvag in-  code RM™ (p — a, p) is loosely upper-bounded tgp+2" (2¢
troduce a “canonical” twisting which corresponds to Forney’ssites,< 2" states per sites 2" productions per state), a large
“iterated group squaring construction” and essentially serveshat fixed multiple of the code length.

linearize the grammatical hierarchy. To distinguish the two de-We conclude our discussion of thinning by observing
velopments, we label the RM symbols with the leiefinstead that one could as easily have thinned a general context-free
of A), and everywhere replaedy f. Then for the RM grammar code—simply by making the appropriate substitutigns- c;

1) equation (6) (withB in place ofA and f in place ofc) s_uch _codes would exhibit all of the above features except
constructs (inductively{ Bf, ; 3, a linear representa- linearity.
tion of Z2";

2) equation (8) (withB in place ofA) produces a collection
of distance2® codes{B;, , 1}, representing

APPENDIX C
STATE-SPACE PARTITIONS

To implement a CTFDP version of a given DP problem, one

RM (p — a, p) = B must first partition the problem’s state spaces into hierarchies

w of super states. In this appendix, we present one particularly
o effective choice of super states for thinned RM codes.
_ . We begin by introducing a more compact notation for the
and its cosets i&; ; and thinned RM grammar. The set of allowed symbols at Iéef

3) the productions in (10) (witlB in place ofA and f in  the code RM™ (p — «, p) can be re-expressed as
place ofc) define a grammatical realization of the codes

{BY, i} {Bi"0<i<N' -1}
APPENDIX B where the integer labek is derived from the indexes
THINNING G0 -, ix) Of Bfo,...,iK(l>(K(l) = min(l, « — 1)) by

For the class of context-free codes constructed in Sectigpncatenation of binary representations. Specifically,ilet
IV-A and generated by RM-like grammars, one can bound tile< k < K(I) be the(})-bit binary expansion of;, and let
size of the state space without disrupting the coherence of thedreéoé1 . . . £y be the concatenation of these expansions. Then
sulting context-free grammar. Suppose, for example, we impasé the integer with binary expansiar(i « i =doiy ...ix @)
an upper bound af* on the number of allowed productions inThe labeli denotes the correspondirgjate of an allowed
an intractably large context-free grammar of this type. The yiekymbol. The number of states at levklis N' (see [36])
of this reduced grammar is a subcode of the original one—hereas the number of productions allowed at levek

thinnedcode. We define the thinned RM code RN(p— v, p)  I' = min(2", micy).
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Among the advantages of this scheme is that single and m{}; <) — [(¢r, L), (¢r, R)] is an allowed super-state produc-

tiple productions can be jointly expressed as

tion if and only if L shares a (suitably sized—see [36]) binary

prefix with g(Z A j, Z) and R shares a binary prefix withi A j

r'—1
Ln _ -1,n —1,n
By = U Byain, s X Bacyny
J=0

where the auxiliary integers(¢) and z(¢) are defined by the
correspondences

z(i) & 2(i) =ToZ1 ... T () [1
and 2]
Z(L) «— z(L) =201 - .- zK(l)
3
and the binary operaton is the same ag itself—bitwise 8
exclusiveor, introduced for notational convenience. In
these expressions;, is the (‘;')-bit binary expansion of (4]
z, = dpmod mi' and z; is the (";1)-bit expansion of  [s5]
ok = |lirg1/miZy] (or 0if & = K(1)). Note that for single
productions (i.e.K(I) = 1), the stringsz x;y andz ;) have (6]
length (l_ll) 2 0 and can, therefore, be ignored; however, for
multiple productiong K’ (1) < [) they cannot be ignored.
A further distinction of this scheme is that the multitude of
productions for the RM code RIp — «, p) can be readily  [8]

computed from a comparatively small set of stored inte-
gers—the2(p + 1) parameterd N, 1|0 < I < p} and the set
of 2 3°7_, N' auxiliary z’s and z's, one pair of integers for
each state at each leveb 1. But of far greater consequence is [0l
the foundation we have established for constructing a simple
system of state-space partitions for thinned RM grammars.  [11]
The basic partition at level is constructed as a succes- [12
sion of binary refinements of the set 8f' states. There are
log, N'+ 1 coarseningsg € {0, 1, ..., log, N'}, each with
Nb1 2 | V'/24| super statedlenoted by the paifg, ) at
coarsenesg. Specifically, we define the coarsened symbols

[13]

[14]
[15]

/ 16
B2 (B k2 = 1) e

foro < i< Nb7_—1, [17]
The extraordinary feature of our choice of super states is that
they inherit the underlying structure of the RM grammar. In fact,[18]
these coarsened symbols obey the recursive set relation (provag

in [36])

Ilvq7

{ ' -1 q [201
Bi’n’qz U Bi-1n.1
0

x By o™ (12)

a(@NG, Z)
[21]
whereZ andz are simple functions of the auxiliary integerg)
andz(7), respectively, whilg and’ ¢ depend only on the level [22]
[ and coarsenesg Although this coarsening scheme is some-

. : ionig?!
what cumbersome to express mathematically, its computation
implementation is straightforward and facilitates the remarkablyz4]
fast CTFDP decoding algorithm presented in Section V-C.

. . 25]
For example, since the hierarchy of coarsened symbolg
retains the underlying RM structure, the run-time compu-{26]
tation of super-state productions required by the CTFDP27
procedure is trivial. If (¢, ), (¢r, L), and (¢gr, R) are [27]
super states at the respective sitgssh;*,, andsh;*, then

for some0 < j < 19 — 1; for if this condition is met, there

is an allowed state production contained within the postulated
super-state production. We are thus able to compute super-state
productions by inspection!
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